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In recent years, we have seen a prolific rise of mobile and wearable computing

in healthcare and fitness. Rich user interfaces have made manual logging eas-

ier, and sensors have made tracking effortless. However state-of-the-art feed-

back technologies are still limited to either providing an overall status, lucra-

tive visualization of data or simple tailoring based on age, gender or overall

health status. It is possible to go beyond these paradigms and take advantage

of more fine-grained information contained in the data. To this end, we cre-

ated MyBehavior, a smartphone application that takes a novel approach to gen-

erate deeply personalized health feedback. MyBehavior automatically learns a

user’s physical activity and dietary behavior, and strategically suggests changes

to those behaviors for a healthier lifestyle. The system uses a sequential decision

making algorithm, Multi-armed Bandit, to generate suggestions that maximize

calorie loss and are easy for the user to adopt. In addition, the system takes

into account users preferences to encourage adoption using the pareto-frontier

algorithm. A 14-week study with MyBehavior shows statistically significant

increases in physical activity and decreases in food calorie when using MyBe-

havior compared to a control condition. I also discuss several lessons learnt and

implications for future design of similar health feedback systems.
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CHAPTER 1

INTRODUCTION

1.1 Personalized health recommendation: A unexplored space

for mobile computing

Recently mobile and wearable computing have ushered in a new era of

health research by enabling data collection in-situ. Modern sensors in smart-

phones and wearable devices are capable to unobtrusively track an individual’s

physical activity, social interactions and life contexts [88][127]. The variety of the

sensors are also increasing, and in the process enabling the capture of even more

details of a user’s activities (e.g., eating moments [1][153], heart rate [1], atten-

tion [2]). Information that can not be captured with sensors; e.g., complex exer-

cises, emotions [121] or food intakes [111]; can be manually recorded with easy-

to-use apps. In conjunction to these ongoing data collection efforts, research

has also progressed to analyze the collected data, and find behavioral patterns

that relate to health and well-being. Rabbi et al. [124], for instance, showed the

amount of daily face-to-face interaction from phone audio can inform depres-

sive symptoms. Wang et al. [155], in their StudentLife project, demonstrated

that different sensor and self-reported measures can correlate to physical activ-

ity, emotional state, productivity and performance of students.

Although the existing works to data collection and analysis are necessary to

understand health conditions, it is also important to close-the-loop and provide

feedback based on the data. However if we look at the existing literature then

we will see that the mobile technologies for health feedback are still at its in-

fancy. There is no system, prior to this dissertation, to provide personalized and
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actionable recommendation on what to do, once a user’s data is collected and

health conditions are understood. i.e., if a user is less active, for instance, then

current health feedback systems can not suggest specific exercises or physical

activity that are applicable for the user given her lifestyle. If we look at do-

mains outside of health then we will see a different picture; there are systems

that can suggest what to do. For example, Google can suggest webpages based

on a search query that also matches a user’s past preferences. Similarly, Pan-

dora and Netflix can recommend songs and movies respectively which match a

user’s past behaviors.

To this end, this thesis explored the creation of an automated system to per-

sonalize health recommendations from phone data. The system is called MyBe-

havior and it works in the following steps: first, MyBehavior monitors a user’s

physical activity and food intake. Then MyBehavior understands common phys-

ical activity and dietary behavior by grouping similar activities. For instance,

walking in the office or consumption of similar foods (e.g., pizzas) would be

grouped together. Subsequently, MyBehavior issues personalized suggestions

that relate to specific user behaviors: e.g., to walk more near the office or to

avoid eating pizza.

The later chapters of this dissertation will largely focus on the details of the

design and implementation of MyBehavior. In this chapter, I take the opportu-

nity to discuss the motivation and feasibility of personalizing health suggestions

with mobile data. Specifically I will discuss (1) “Are personalized recommen-

dations necessary for health feedback?” I will contend that personalization is in

fact necessary for health recommendations by grounding my argument in rele-

vant literature in psychology and social science (2) I will argue that mobile data
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provide a novel opportunity of personalizing health recommendations that is

different from prior related works (3) Then I will briefly outline on how to cre-

ate and evaluate such a personalized health suggestions generation system (4)

Finally, I will conclude by giving a brief description of MyBehavior as an in-

stance of personalized health recommender system.

1.2 Importance of personalized health recommendation

“Its far more important to know what person the disease has than what

disease the person has.” —– Hippocrates [4]

Personalization is generally a desired feature for any user data driven sys-

tem. However personalization can be relevant to health feedback for two rea-

sons. First, each individual is unique with distinct characteristics and behaviors.

Personalized feedback can address such individual uniqueness and hence has

the potential to be more effective. Secondly, personalized feedbacks can be easy

to adhere to, since they relate to distinct individual needs and behaviors. In the

following, I will describe these two points in detail. I will also provide relevant

theories from the literature to support the two points. Subsequent chapter 5 and

6 will provide stronger quantitative and qualitative evidence of the efficacy of

personalization.

1.2.1 Uniqueness of individuals

Proponents of small data [48], personal (precision) medicine [4][54] and N-

of-1 interventions [141][65] contend that each individual is unique and hetero-

geneous because of their culture, age, gender, childhood development and con-

3



texts in life. Therefore one-size-fits-all interventions/treatments may not fit or

apply to everybody. Since the goal of any intervention or treatment is to max-

imize individual benefits, it is important to consider individual differences. To

this end, N of 1 intervention/treatments first collect evidence based information

for an individual. The information is then analyzed to create interventions that

work best for the individual.

Evidence of such individual differences is not unique to medical literatures.

Other disciplines also support the notion of inter-personal variability. For in-

stance, idiographic research in psychology pertains to the studies of an individ-

ual’s unique agency and life, whereas nomothetic describes studies of classes of

population where a subject is seen as an exemplar [64]. Similar to psychology,

logical positivists in social science seek for objective laws, properties or principles

in society while constructivists argue that there is no objective truth in society:

social life or contexts are relative and subjective [129].

Acknowledging the importance of individual uniqueness in health interven-

tion, personalization can tap into the individual uniqueness and can provide

solutions that optimize individual needs. Importantly, modern mobile or wear-

able devices can collected deeply personal health data, and it is possible to pro-

vide unique personalized recommendation for each individual. Such personal-

ization can be potentially highly applicable to the user.

1.2.2 Increased adherence

Any personalization scheme needs to learn a user’s behaviors/preferences

first, and subsequently personalize experiences that reflect the learnt behav-

iors/preferences. For instance, if Google Now [112] sees a user to browse Amer-
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ican Football or Presidential debate related news then it will start recommend-

ing related articles. A personalized health recommender systems for health can

do the same and suggest actions that already relate to a user’s behavior. For

instance, if a user already walks near his office then a personalized suggestion

could be to walk more or walk faster near office. Similarly a suggestion can

be issued to avoid a unhealthy food if the system sees the user to eat the food

repeatedly.

There is an additional benefit of relating suggestions to existing user behav-

iors: the suggestions often involve activities that the user is already doing or

can do with small changes. Therefore the suggestions are potentially easy-to-

follow since they relate to the user’s daily routine. Specifically, in comparison

to generic non-personalized health suggestions namely “walk 30 minutes to be

active”, “go for a movie to reduce boredom” or “eat fish for dinner”, person-

alized suggestions are arguably more actionable and, if acted on, can provide

desired health outcome with less effort. Furthermore, the concepts of low bar-

rier or low effort are well documented in behavior change literature. BJ Fogg’s

behavior model [52] argues that if a system wants to persuade its users to un-

dertake an action then the action needs to be low effort or easy. Similar to Fogg’s

behavior model, Health belief model [68] and theory of planned behavior [13]

use the concept of “barrier” and advocate to remove barriers in order to make

a behavior change. Since personalized suggestions already relate to a user’s

behavior or routine, there is less barrier to entry which can aid the behavior

change process.
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1.3 Health feedback and mobile computing

Despite the significance of personalizing health feedback discussed above,

there is no system that can automatically personalize health suggestions in order

to reach a daily goal or maintain a healthier lifestyle. Current health feedback

systems are limited to either providing overall health status, attractive visualiza-

tion of data or generic one-size-fits-all recommendations. However it is possible

to go beyond these paradigms, and extract patterns of behaviors in mobile data,

and subsequently personalize suggestions at an individual level. In this section,

I will discuss several examples of behavioral patterns that can be extracted from

mobile data. These behavioral patterns can be subsequently used to personalize

suggestions that relates to the user’s life. Before going to that discussion, I will

describe prior works in health feedback, which will help situate the novelty of

my proposed personalized health recommendation scheme.

1.3.1 Prior work

Existing health feedback technologies for mobile phones can be broadly

characterized into three categories. They are as follows:

• Overall feedback: This category of feedback technology converts all the

collected data across health dimension in one data point (e.g., step-count).

The Ubifit app by Consolvo et al. [38], for instance, provides visual feed-

back on overall progress of daily physical activity on the phone wallpaper.

BeWell [89] provides health feedback for overall physical activity, social in-

teraction and sleep. Functionally, the overall feedback primes the user to

achieve the daily goals (e.g., ten thousand steps). However, they fall short
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in giving specific recommendations that can tell how to reach the goals.

• Visualization of almost entire data: Another category of feedback tech-

nology relies on the visualization of the tracked data [106][51]. These tech-

nologies rely on users to interpret the data and find actionable insights

and to-dos. However, visualizing the entire data can potentially create

an information overload, and user can misinterpret the data without ap-

propriate domain knowledge (e.g., the knowledge of making a success-

ful behavior change, or trying something hard/unusual that they can not

sustain). Furthermore since the variety of sensors are increasing, the man-

ual interpretation of multi-dimensional data visualization will continue to

get harder. Therefore it is questionable whether only visualizing data is a

workable strategy as we move into a future with more sensors and multi-

dimensional data.

• Generic non-personalized suggestions: Some existing feedback tech-

nologies provide suggestions on what to do, but the suggestions are the

same for the entire population or a segment of the population [119][93].

For instance, suggestions are often tailored based on age, gender, ethnicity

or users overall lifestyle (e.g, whether a user still figuring out what actions

to take vs. user already has a well-maintained active lifestyle [122]). e.g.,

at early stages of a smoking cessation program, negative messages often

work better than positive messages [37]. However these methods ignore

individual differences, which can be improved with personalization.

1.3.2 Personalizing health recommendation from mobile data

Does mobile data contain information of human behaviors that can be used

for actionable suggestions? In the following, three cases of mobile data will be
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described, where we will demonstrate that mobile data can contain meaningful

behavioral patterns. Subsequently these behavioral patterns can be utilized for

actionable personalized health suggestions to improve well-being.

(a) (b) (c)
Figure 1.1: Visualization of user behaviors over a week (a) Heatmap of places a user
stayed stationary (b) Location traces of frequent walks for the same user (c) Location
traces of frequent walks for another user.

Physical Activity

Figure 1.1 shows a few physical activity behavior for two different users.

Figure 1.1(a-b) show locations of behaviors of one user’s stationary locations

and a route of frequently taken short walks. One of the stationary location is the

users’s office and the other is the user’s home. The walking traces represent the

user’s walks near her office. Figure 1.1c shows another walking behavior over

a week for a different user. These examples demonstrate that physical activity

traces from phones can inform behavior at an individual level. Such behaviors

can be used to create personalized suggestions that can make users active easily

(e.g., continue or increase walking near office).
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(a) (b) (c)
Figure 1.2: Three separate dietary behaviors. (a) pizza eating behavior for a user (b)
banana eating behavior for the same user (c) bagel eating behavior for another user

Food

Similar to physical activity, Figure 1.2 shows three separate dietary behaviors

found in food journals of two different users. Figure 1.2a points a unhealthy

behavior of repeated pizza eating. A personalized suggestion can be issued to

avoid such unhealthy pizza eating behavior. On the other hand, Figure 1.2b’s

banana eating behavior is a healthy one and can be suggested to be continued.

Finally, the repeated bagel eating behavior in Figure 1.2c can be suggested to be

avoided.

Social interactions

Socialization is an important predictor of mental well-being. Earlier works

have shown that the level of socialization is negatively correlated with depres-

sive symptoms [124][155]. Furthermore, socialization and social support are

important coping mechanisms for stress and depression [90].
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Figure 1.3: Distribution three users’ SMS pattern

Our phones can capture our socialization level and can identify who we

commonly communicate with [11][160]. Figure 1.3 shows a representative ex-

ample of socialization, where the ego network of SMS pattern for 3 users are

shown. The data is collected by Aharony et al. [11]. The black nodes represent

users and the green nodes represent the receivers that the users have commu-

nicated over SMSes. The edge weight shows the percentage of a user’s overall

SMS that were sent to a receiver. The total edge weights of a user is near 80%,

which means the user sent 80% of her SMS to the receivers included in the fig-

ure. In other words, the included receiver nodes can be considered as proxies

to the social circle with whom the user largely ( 80%) communicates with. With

such information, a personalized system for stress coping can suggest specific

friends to talk to for social support [123].

1.4 The challenges of creating a health recommender system

The three evidences in the above section demonstrate encouraging examples

of the potential of mobile data for personalizing health recommendation. Nev-

ertheless, the creation of a personalized health recommender system requires

careful design decisions, system building and evaluation. The creation process

can often span multiple years of research and development. In the following,
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I will give an overview of the necessary steps to build a personalized health

recommender system.

1.4.1 Designing health recommendation from raw data

The biggest hurdle of a health recommender system is to transform the raw

personal data into suggestions that can positively affect a health outcome. For

instance, an app to promote physical activity needs to transform milli-second

level accelerometer data into actionable suggestions. At a high level, the trans-

formation can be divided into two stages (Figure 1.4). The first stage is to mine

a user’s behavioral patterns from raw data stream. The second stage involves

the personalization of health suggestions that relate to a user’s behaviors. I will

describe these two stages in more detail below.

Figure 1.4: Stages of transforming data into health feedback

Stage 1: From raw Data to Behavior

At the lowest level, phones record raw data that represent user activities

with timestamps. e.g., a raw data point can be a 5 minute walk near office at
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Nov, 3 2015 3:15PM. If the user has a habit or behavior of walking near the of-

fice then similar data points will appear multiple times in the raw data stream.

Simple unsupervised clustering can group these repeated similar user behav-

iors. Figure 1.1 shows a few walking and stationary behaviors that are found by

grouping repeated occurrences of similar activities from raw physical activity

streams. Figure 1.5 shows grouping of similar food intakes.

Figure 1.5: An example of transforming raw food logs in ‘a’ to eating behaviors in ‘b’

Although clustering similar activities can inform common user behaviors,

the distance metric for clustering will depend on the kind of data (e.g., food,

walking or SMS). For instance, if a user’s foods are tagged with food-ingredients

then similar foods will have similar tags. A distance metric to determine sim-

ilarity based on words, as commonly used in Natural Language Processing or

Information Retrieval, can be useful to group foods that are similar [75]. On the

other hand, in order to determine similar walking instances, a distance metric

is needed to quantify similar walking trajectories. One such measure can come

from hand-writing recognition literature, where trajectories of hand-written let-

ters are matched with some canonical letters’ trajectories [147].
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Stage 2: Recommendations that relate to user behaviors

After finding the relevant behaviors for different users, personalized recom-

mendations can be generated that relate to the user behaviors. However many

different behaviors can be found from a user’s mobile data (e.g., all the differ-

ent places a user might walk and all the foods the user might eat). Not all of

these behaviors are good enough to be related to while providing suggestions.

Therefore the suggestion generation process needs to focus on the behaviors

that may accelerate the path of reaching a desired health outcome. e.g., a food

recommender system can focus on suggestions that a user can do with small

changes to existing food habits, like changing pizza eating behavior. In addi-

tion, not all the provided suggestions will be followed and the recommendation

algorithm also needs to manage/co-ordinate a pool of effective suggestions that

are followed upon.

(a) (b) (c)
Figure 1.6: Visualization of walking behaviors (a) walks near office (b) walks near
home (c) a non-frequent walk

Choosing the appropriate behaviors for suggestions depends on the prob-

lem domain (e.g., from relevant literatures and theories from the domain). For
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instance, let us consider an app that wants to promote more physical activity.

The app can suggest to undertake an activity which is low-effort or easy, as

informed by theories in persuasion and behavior change [52][68]. Easy-to-do

activities are often behaviors that user already do often or can do with small

changes [86]. For example, assume the app found three separate walking be-

haviors of a user as shown in Figure 1.6. Figure 1.6a, 1.6b, and 1.6c respectively

show frequent walking behaviors near office, near home and a non-frequent

walk. The health feedback can prioritize the suggestions to walk more near

office and home more, compared to Figure 1.6c, since they are lower-effort.

Theories can help to choose the recommendation, but one additional step is

necessary to operationalize the theory into an app. The choice or ranking crite-

ria needs to be embedded inside an algorithm. A way of doing so is to quantify

the prioritization criteria as a ranking function of a decision making algorithm.

Choosing an appropriate decision making algorithm is often easy, since there is

already a collection of such algorithms in the decision theory, economics, rein-

forcement learning and recommender systems literature.

1.4.2 System implementation for real world use

The health recommender system will be implemented as a smartphone ap-

plication. However, smartphones have limited batteries, therefore the recom-

mendation generation algorithm needs to run efficiently that drains less battery.

Less computationally heavy algorithms will be essential for commonly done op-

erations. Since most of these algorithms often do machine learning, the online

or incremental learning can be used for low computation and higher battery

efficiency [32]. This is because, online algorithms only need to analyze the lat-
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est data point to learn, which in turn requires less computation. Furthermore,

such online learning can often perform similar to a computationally heavy batch

learning scheme. In fact, recent literature shows that online learning can be as

good as batch learning if appropriate strategies are used for making incremental

update to the classifier [22].

1.4.3 Iterative design and evaluation

Personalized health recommender systems need to interact with its users.

Thus the application needs to ensure smooth user experience. However good

usability can be hard for data-driven personalized systems, since the machine

learning optimization may not directly translate into information that users can

understand. Typically several iterations of user-centered design and develop-

ment are required to make a highly usable app.

For a novel behavior change application, Klasnja et al. [80] recommend to

conduct several small scale pilot studies to polish user experience. Once the us-

ability glitches are addressed in the pilot studies, the application may be eval-

uated quantitatively in a user study. However a proper large scale randomized

controlled trail may be hard because of limited resources. As a result, a smaller

scale “single case experiment”[42], with a within subject design, may be more

suitable for early quantitative evaluation. Once early efficacy of the app is con-

firmed quantitatively with single case experiments, a larger scale randomized

controlled trail can be run to formally demonstrate efficacy.
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1.5 MyBehavior: A case study of automated health recommen-

dation

MyBehavior is a smartphone application that takes a novel approach to gen-

erate deeply personalized health recommendations. It combines state-of-the-art

behavior tracking with algorithms that are used in recommender systems. My-

Behavior automatically learns a user’s physical activity and dietary behavior,

and strategically suggests changes to those behaviors for a healthier lifestyle.

The system uses a sequential decision making algorithm, Multi-armed Bandit,

to generate suggestions that maximize calorie loss and are easy for the user to

adopt. In addition, the system takes into account a user’s preferences to encour-

age adoption using the pareto-frontier algorithm. MyBehavior is developed as

an Android application and the app was used by nearly 40 people in real life

situations. Several pilot studies were run to test early efficacy of MyBehavior

and to improve user experience. Finally, a 14-week validation study was done

that showed statistically significant increase in physical activity and decrease in

food intake.

Figure 1.7 gives a few examples of personalized feedback generated by My-

Behavior. The three subfigures show distinct personalized physical activity sug-

gestions for three different users. They show the frequency of different user

behaviors and places where those activities happened. More frequent and calo-

rie burning activities are ranked higher since they are easy-to-do while also can

entail high calorie loss.

16



(a) (b) (c)
Figure 1.7: Physical activity suggestions for different users

1.6 Organization of the dissertation

This dissertation will mainly describe the design and development of My-

Behavior. In the end, several implication and lesson learnt will be described.

Specifically rest of this dissertation is organized as follows. Chapter 2 will

discuss the psychological theories that underpin the suggestions generation

scheme of MyBehavior. Chapter 3 will detail the data logging mechanism and

transforming data into user behaviors. Chapter 4 and 5 will contain the pro-

cess of suggestion generation and related pilot studies. Finally the details of a

quantitative study with MyBehavior will be described in Chapter 6. I will con-

clude with my reflection on designing MyBehavior and potential future work

in Chapter 7.
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CHAPTER 2

THEORIES TO DESIGN HEALTH FEEDBACK

MyBehavior’s uses machine learning on mobile data to personalize health rec-

ommendations. The goal of the recommendations is to suggest actions that

aid the behavior change process. In order to do that effectively, MyBehavior

can borrow from the psychology theories which has already analyzed and re-

searched the behavior change process for decades. For instance, Social Cog-

nitive Theory [17] argues that an individual should acquire self-efficacy or

mastery over certain behaviors/actions (e.g., going to the gym) for sustained

change. A way to acquire mastery over an action is to repeat the action of-

ten [86]. MyBehavior can follow Social Cognitive Theory and prioritize sugges-

tions that encourages repetitions of actions to build mastery.

In fact, designing feedback technologies by grounding the design in psy-

chology theories are quite common. Such grounding ensures that the design

takes advantage of the insights of that are known to work for behavior change,

and not to reinvent the wheel. In the following, I will describe several theories

that are relevant for MyBehavior. Subsequent chapter will operationalize these

theories to build the MyBehavior system. Before that, I will first give a brief

description of the role of theory in behavior change technologies. Then I will

specifically describe theories that are used to guide MyBehavior design. Finally,

I will acknowledge other relevant theories that are utilized in prior works, but

not used in MyBehavior.
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2.1 Role of theory to design health feedback

For behavior change applications like MyBehavior, it is quite common to

ground the underlying feedback mechanism into well known behavior change

principles. A large number of prior health messaging applications relied on the

Trans-theoretical Model of behavior change [122], health belief model [68] or

Cognitive behavioral therapy [144] theory etc. For instance,Yun et al [163] used

Health Belief Model to design SMS messages to improve asthma symptoms for

children. Granholm et a. [61] utilized cognitive behavior therapy theory and

created text-message interventions for medication adherence, socialization and

auditory hallucinations for Schizophrenia treatment. Grimes et al. [63] created

a game to increase nutrition or food related knowledge that follows the Trans-

theoretical Model.

Evidence of these examples invokes the question on why theories are im-

portant to heath feedback design. Furthermore if theories are indeed important

then what is a formal way to incorporate theories into health feedback design.

The primary reason to ground health feedback design in existing theories is

to incorporate the already-working knowledge of psychological theories; there

is no need to spend time on different strategies and subsequently reinventing

what has been already known in the psychology theories. While deciding on in-

corporating theory into design, behavioral psychologist Lawrence Greens men-

tioned the following [144],

“Each theory or model is an approximation of a different slice of reality, or

a different perspective of the same slice. The framework should emerge in-

ductively from personal experience in practice (and research). Theories and
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their variables can then be attached to the practitioner’s (researchers) per-

sonal framework deductively by asking of each theory how it fits, what it

adds or what it explains among the cause-effect relationships one presumes

to be operating in ones practice (or research).”

According to the above quote, theories can be used to design in two ways:

inductively and deductively. First a deductive step can be taken by creating a

first version of the application that directly follows a theory. Once the app is

deployed, new problem specific observations will arise. These new observa-

tions then would be analyzed for patterns/themes. Theories can be used in-

ductively to underpin and solidify the reasons behind the patterns/themes. A

new version of the application then can be created and the process will iterate

until a usable version is achieved. Such an iterative approach is also analogous

in HCI literature as iterative design and in psychology as pragmatists mixed

method [151].

In our work, we will first deductively use theory to guide the first version

of MyBehavior in Chapter 4. Then we will analyze some observations from

the first version’s deployment and ground these observations in theories as an

inductive step. Subsequently a new version will be developed in Chapter 5. Fi-

nally, we will not focus on just one theory. One theory can’t explain all the facets

of the change process. We will merge together several theories to pragmatically

build MyBehavior.
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2.2 Behavior change theories for MyBehavior

A successful behavior change may mean the build up of a few healthy di-

etary and exercise habits. In MyBehavior, the purpose is to aid the build of a

few such habits. Now the process building habits can be divided into two steps.

First, the user needs to be persuaded to do the actions that constitute the habit.

However persuading only is not sufficient, since persuading without a strategy

will not result into sustained behavior change. The existing theories in behavior

change and habit forming can inform the strategy on how to persuade such that

successful behavior change happens. In that vein, I will split the discussion in

two parts. First, I will describe the theories of persuasion. Then I will describe

how to persuade to build habits.

2.2.1 Momentary change: Theory of persuasion and low-effort

Persuasion is the process of convincing people to undertake desired ac-

tions. From ancient philosophers Plato [104] to more contemporary Robert

Cialdinis work on influence [35], the topic of persuasion received a lot of at-

tention. In wikipedia, a more up-to-date definition of “persuasion” is given as

follows [158]:

“persuasion is a process aimed at changing a person’s (or a group’s) attitude

or behavior toward some event, idea, object, or other person(s), by using

written or spoken words to convey information, feelings, or reasoning, or a

combination thereof.”

The definition defines persuasion as the an interplay among different con-
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cepts namely “reason”, “feelings”, “information”, “attitude or intentions” and

“behaviors”. All these words themselves are broad research topics by their own.

Therefore it is difficult to cover this broad definition, and subsequently opera-

tionalize the different concepts into an app. As a result, we will use a simpler

model for persuasion by BJ Fogg [52]. Fogg’s model is meta-analysis kind of

model that summarizes different elements of prior theories into a simpler form.

Furthermore, the model has been widely implemented in computer based solu-

tions.

Figure 2.1: BJ Fogg’s Behavior model

BJ Fogg [52] model, as commonly known as Fogg’s behavior model or FBM,

advocates the following: in order to persuade anybody to an action, the action

is either easy to do (i.e., low-effort) or the user is motivated to take the action.

Fogg uses the conceptual diagram in Figure 2.1 to describe his model. As can
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be seen from the figure, if somebody is highly motivated then s/he might take

a high effort action. For instance, before a marriage ceremony or significant

life event, people generally become highly motivated to look good in pictures,

and often commit to high effort activities, namely starting to go to the gym.

However, if an action is easy to do then often people can undertake an action

while being less motivated. For example, introverts often find it difficult to go

out and socialize with new people. They often go home after office and watch a

movie, which requires less effort, even though they are not highly motivated to

watch the movies. The “Nudge” literature is another example along the same

line [91]. A classic example of nudge is the restaurant case, where healthier

foods were stored into front positions and users consumed the food from the

front. A possible explanation to this nudging behavior is that users took the

easy option of taking the food from the front: they are easy to get irrespective of

whether they want to eat healthy or not. Therefore Fogg argues that designers

need to take advantage of low-effort more than the motivational approaches,

which often requires conscious engagement [53]. However, majority of past

literature in mobile health feedback technologies focused on motivating users

to be healthy, rather than making things easy.

With the simple framing of persuasion by FBM [52], a large amount of be-

havior can be explained. Nudging behavior is an excellent example where the

FBM can be used to design that promote healthier choices. Furthermore, FBM

elegantly shows that the role of motivation in persuasion and its interplay with

effort. However, the model is naive in considering motivation and effort as

disjoint and mutually independent/orthogonal entities. For instance, knowing

that a task is going to be easy might change somebody’s motivation of taking

the action.
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The interplay between low-effort and motivation is better explained by

Vroom’s expectancy theory. Vroom’s theory basically originated from Market-

ing research [113]. The theory says that the undertaking of a voluntary action

adheres to the following steps:

Effort =⇒ Performance =⇒ Reward =⇒ Valence

First the individual asks whether she can give the effort and whether the ef-

fort will result into the intended performance. For instance, if somebody wants

to start giving some effort for running a 5 mile race then she should ask whether

she will be able to run (or perform) the 5 mile race. If she can do the 5 mile race

then what reward is waiting for her. Finally what does she will feel (i.e., valence:

happy or sad) about the behavior and reward. Therefore given this model, ef-

fort is related to end reward or motivation - if the action can be done within

manageable effort then the user might be more motivated to take the action.

Although FBM and Vroom’s expectancy model explore the role of effort or

motivation in persuasion, these models are too general and are applicable for a

broad range of persuasive applications. These models can explain persuasion

or taking actions in the moment. e.g., buying a product or making a click on a

website. However health behavior change is a long term process where persua-

sion needs to happen many times. Furthermore, there are elements of human

behaviors that are beyond conscious engagement that persuasion requires. In

other words, persuasion often assume conscious engagement towards taking

an action (e.g, thinking about reward and personal feelings). However recent

habit theory and dual process theory demonstrate that human actions can hap-

pen both unconsciously and consciously [46][76]. In fact, human mind can have
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only one conscious thought at a moment, and majority of the other actions hap-

pen habitually or unconsciously. Such habits are especially important for health

behavior change, since if a few of these habits are healthy dietary or physical ac-

tivity habits then people can be healthy with nearly no effort. FBM or Vroom’s

theory falls short to explain these unconsciousness behaviors.

In the following, I will address these limitations of simple persuasion. I will

give a brief description of health behavior change theories that will address the

long term engagement with persuasion which will result into forming habits.

2.2.2 Long term change: Theory of self-efficacy and habits

Forming new healthy habits, e.g., eating vegetables, can mean a long term

behavior change. However, the question is what characterizes habits. Habits are

actions that happen automatically and unconsciously whenever a cue or context

is present [46]. For instance, I was going to a new restaurant with a friend few

days ago. I started talking and got really engaged in a deep conversation while

driving on the street. Then without thinking I took a road that I commonly take

to go home, which is not on the road towards our destination restaurant: my

hands on my steering wheel automatically turned towards that roads direction.

This means that my head was unconsciously responding to context (i.e., road

to home) and started taking my habitual actions. While I was taking the wrong

turn, my conscious mind was engaged in the deep conversation with my friend.

This presence of unconsciousness in human psyche is well-known and docu-

mented in psychology. The great Sigmund Freud is often attributed to introduce

the concept unconsciousness in psychology [62]. Nobel prize winner behavioral

economist Daniel Kahneman’s famous book thinking fast and slow [76], started
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with the “two systems theory” where he argues that human brain can support

two kinds of processing (1) fast unconscious processing: this system works par-

allelly with other actions. (2) slow conscious system when we have to think and

consciously make decisions; The slow system support serial processing only,

and it is not possible to consciously think about two things at the same time.

Therefore in an ideal scenario, if an individuals mind is clouded (e.g., highly

stressful situations) with other thoughts then it is likely that the individual’s

other actions are likely to be unconscious or habitual. From a health behav-

ior change perspective, this means that if a stressful situation occurs then it is

unlikely that somebody will continue to consciously/mindfully motivate them-

selves to continue the activities. Given our modern information age, it is more

and more likely that our minds will increasingly be clouded by more informa-

tion [98]. Therefore often modern human behavior researchers argue for more

automatic and unconscious means of influence or change. For instance, Robert

Cialdini, in his best selling book of social influence, mentioned the following

regarding unconscious behavior [35]:

“The evidence suggests that the ever-accelerating pace and informational

crush of modern life will make this particular [unconscious] form of un-

thinking compliance more and more prevalent in future.”

Similar argument has been put up by Gardner [57]. Gardner contends that

habits are in fact more sustainable than motivation based techniques, and de-

signers should focus more on habit building for promoting healthier lifestyle.

He argues that habits require less conscious engagement and likely to hap-

pen even when the mind is consciously engaged to something else. Therefore,

the question is whether we can create some unconscious behavior (i.e., habits),
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given the limitation of slow and serial conscious processing of the human mind.

Literature suggests that context is an essential component of habits and

habits only occur automatically in a given context [86][56]. For instance, if some-

body has a walking habit in the office then the walking will start automatically

while in the office. But if the office is switched to a new location then early habits

will be gone and new habits will need to be formed in the office location. An-

other example can be driving a car. If we are inside our car, that we are driving

for days, our actions of pressing the pedal or steering the wheel become auto-

matic (i.e., we dont have to think about it anymore). However, if we buy a new

car then automatic behaviors in our older car will not transfer and we have to

consciously engage to drive the new car for a few days. Gardner [56] described

similar connection between context and habit with the following anecdote:

“There is a story of a practical joker, who, seeing a discharged veteran

carrying home his dinner, suddenly called out, ’Attention!’ whereupon the

man instantly brought his hands down, and lost his mutton and potatoes

in the gutter. (Huxley, 1866, cited in James, 1890, p120)”

However, context only is not enough to form habits. The action needs to

be repeated often to form habits. For instance, if an individual wants to be

habituated of driving a new car then just being in the car would not magically

create the habitual driving; the individual have to drive the car couple of times.

More formally, Lally et al. [86] shows that if same behavior is repeated often then

users acquire a sense of automaticity, and a higher automaticity is the predictor

of habit formation.

Finally, it is not always easy to repeat a behavior to a point where the behav-
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ior starts happening unconsciously and habitually. For instance, I am going the

gym regularly for the past 2 year. However, my gym works is yet to turn into a

unconscious habit. According to Lally et al. [86], habit forming may take time

and it depends on the task. Also, there are individual variabilities on how long

it takes to form different habits.

Given that unconscious habits might take time to form, repetitions may still

be useful. For instance, a number of theories, namely social cognitive the-

ory [17], health belief model [68], and theory of planned behavior [13], argue

the following. Social cognitive theory [17], from Albert Bandura, argues that an

individual has to acquire self-efficacy to change her behavior. A big component

of self-efficacy is the mastery feeling. Mastery of performing an action often

comes through skills which are often acquired through repetitions. Thus if an

individual keeps on repeating to go to the gym then the individual is acquiring

the skills or mastery, even though habits are not immediately formed. This mas-

tery of skill or a sense of control of executing an action is also well founded in

other behavior change theories. For instance, theory of planned behavior [13]

states that, the undertaking of a voluntary action depends on a sense of con-

trol of executing the action. This is referred to as “perceived behavior control

belief”.

In summary, if the same action is done repeatedly in a given context (e.g.,

place) then habits might form. If habits are not formed then at least an individ-

ual gains self-efficacy through repetitions, which is an essential component of

behavior change. Given these insights, MyBehavior will strategically suggest

repeated actions in a given place (or context). Furthermore to persuade users to

take the actions, MyBehavior will ensure the actions are easy to do as suggested
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by FBM. In the following, I will give a brief preview on how these theories are

incorporated in MyBehavior’s recommendations. Later chapters will include

details on how these recommendations are created.

(a) (b)
Figure 2.2: Screenshot of MyBehavior design (a) activity suggestions (b) tracking
progress of suggestions over time

2.3 A preview of theories inside MyBehavior design

MyBehavior incorporates the ideas of low-effort and habit forming in its in-

terface design. Figure 2.2 shows a few representative screenshots of MyBehav-

ior, where the concepts of low-effort and habits are incorporated. Figure 2.2a

shows a set of highest rates suggestions where two elements of low effort are
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included. First, the suggestions ask to continue or make small changes to al-

ready existing behaviors (e.g., continue walking or gym exercise). Since the

suggestions already fits a users routine, they are easy to follow. Secondly, more

frequently repeated behaviors are prioritized in the suggestion ranking; the idea

is that the more a suggestion is done, the easier it gets. Finally, Figure 2.2b shows

the progress of a suggestion over time. The progress prompts the user to repeat

the suggestions often, in a given place or context (e.g., East Ave in the figure).

Recall, repeating actions in a context helps to build habits.

2.4 Other theories of persuasion and behavior change

I conclude this chapter by describing a few well-known theories of persua-

sion and behavior change that are not used in MyBehavior. Note that, these

theories are not included because it is hard to operationalize them in the ini-

tial version of MyBehavior, which is the first app to bridge the gap between

health feedback and mobile data with actionable recommendations. In later

iterations of MyBehavior, these theories will be operationalized to make MyBe-

havior more sophisticated.

The first major missing theoretical aspect of MyBehavior is the ignor-

ing of motivational side of persuasion, and prioritizing low-effort. Note

that, low-effort activities are prioritized since they are actionable in both

low and hight motivation states. However, extra motivation makes any ac-

tion/recommendation more actionable. And this extra motivation can be cre-

ated in different ways, and the earlier literature on health behavior change ex-

plored them extensively. For instance, gamification compares a user with other

similar users, and can increase the motivation to exercise [99]. Social support
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can also increase motivation, and they pervasive in modern fitness apps. How-

ever, there is little evidence of the efficacy of social support in fitness apps [161].

Goal setting (e.g., step counting) is another way to increase motivation. Ubi-

fit [38] and BeWell [87] both use the live wall-paper in the phone to increase user

motivation to reach physical activity, socialization or sleep goals. Nonetheless

these works in motivation are orthogonal to low-effort, as suggested by Fogg’s

behavior model [52]: low-effort actions can be more actionable with extra mo-

tivation. e.g., if a user goes to the gym regularly then going with friends can

increase motivation, which in turn makes going to the gym more actionable.

In addition to motivational aspect of momentary short term changes, a well-

used theory to model the long-term aspect of behavior change is the Trans-

theoretical model, which is also ignored in MyBehavior [122]. The trans-

theoritcal model, or TTM in short, is a stage based model. TTM argues that an

individual moves through several stages while making a behavior change. The

first stage is the pre-contemplation stage where the individual is not intending or

taking actions to change behaviors. The second stage is the ready stage where

the individual is intending to change behaviors but not taking actions. The

third stage is the action stage where the individual is taking actions, but needs

to strengthen the commitment and form habits. In the fourth stage, referred

to as the maintenance stage, the individual is taking actions, and has already

formed and maintaining habits. The principal idea of TTM based intervention

is to tailor health messages or treatments based on TTM stages [84]. Such TTM

based tailoring has found success over non-tailored counterparts over a num-

ber of areas; namely weight loss [72], stress management [50], smoking cessa-

tion [154] and depression management [92]. Despite these successes, there are

several limitations of TTM. Firstly, a number of studies found no effect of TTM
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over non-stage based model [159]. Secondly, the discrete categorization of TTM

is not well-defined [94][156][110]. Furthermore, it is not clear how the division

would work where day-to-day data are available; e.g., if we have step-count

data per day then what does it mean to be in ready or maintenance stage based

on the every day step-count data (e.g., “Does walking 10K steps for a week

mean an individual is in maintenance stage?”). It is for this potential ambiguity

in how to operationalize TTM stages with data, we avoided to implement TTM

in the first version of MyBehavior.
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CHAPTER 3

FROM MOBILE DATA TO BEHAVIOR

In this chapter, the first step to personalize health recommendation, i.e., to log

data and find patterns of user behaviors, is discussed. First, I describe the food

and physical activity logging techniques, along with the optimization to ensure

long term logging, e.g., reducing phone battery usage and low-burden food

journaling with pictures. Then these logs are analyzed to find patterns of di-

etary intake and physical activity, e.g., walking behaviors near office or pizza

eating behavior. In subsequent chapters, personalized suggestions will be cre-

ated that relate to these behaviors.

(a) (b) (c)
Figure 3.1: Visualization of user behaviors over a week (a) Heatmap of places a user
stayed stationary (b) Location traces of frequent walks for the same user (c) Repeated
pizza eating behavior of another user.

3.1 Necessity of behavior mining

This chapter concerns with the mining of repetitive behavioral patterns. But

a general question is why finding repetitive behavioral patterns are even impor-
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tant. In this paragraph, I provide a few anecdotal evidence of behavioral pat-

terns that are mined from phone data of actual users. Then I argue how these

behavioral patterns can be used for easy-to-do behavior change steps. Figure 3.1

shows three different examples of behaviors. Figure 3.1a shows the stationary

behaviors of a user, which shows the home and office locations where the user

stays sitting. Figure 3.1b is the walking locations of the same user near the of-

fice. Figure 3.1c shows repeated pizza eating behavior of another user. It can

be readily seen that these behaviors point to cases which can be continued or

changed towards a healthier lifestyle. Finally, since the behaviors are already

part of a user’s lifestyle, they are easy to change. And the good news is that

these behaviors can be mined automatically from phone data. In the following,

I detail how such phone data can be collected and how the behavior mining can

be carried out subsequently to group similar phone data.

3.2 Mining physical activity behaviors

Physical activity behaviors are mined in a three stage process (Figure 3.2).

First accelerometer and GPS data are logged to understand different activities,

namely walking, stationary, running and in vehicle (Figure 3.2a-b). Then ac-

tivities are grouped together in a chronological list that we refer to as Lifelog

(Figure 3.2b-c). In the final step, the lifelog is analyzed to find patterns of phys-

ical activity behaviors (Figure 3.2c-d). These three stages are described below

3.2.1 Activity recognition

MyBehavior does physical activity recognition as a background process us-

ing accelerometer and location sensors. Accelerometer sensors are sampled at
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Figure 3.2: Stages of mining physical activity behaviors

the maximum available rate. Time domain features (such as mean, variance

and zero crossing rate) and frequency domain features (such as energy distri-

bution at different frequencies) are extracted directly on the phone. We use a

Gaussian mixture model to classify the data into different activities: walking,

running, stationary, driving, etc. The sensing and inference module of MyBe-

havior builds on the data normalization and inference techniques developed

and tested in [96]. In order to re-validate the performance of the system, we

collected accelerometer data from 20 participants. The accuracy of the activity

inference system is shown in Figure 3.3, and they are comparable to the reported

performance in [96].

MyBehavior employs a simple duty-cycling scheme to save phone battery.

Sensing of the accelerometer is triggered every 20 seconds using the Android

alarms functionality. Android alarms are efficient since they can be triggered

without keeping the CPU awake. After every trigger, the CPU is turned on for

10 seconds to sense the accelerometer and perform inference.

All stationary, walking and running activities are location tagged. Since lo-

cation sensors consume more power, locations are polled only when significant
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Figure 3.3: Performance of different activity classifiers

movement are recognized within a certain time window (a minute). As long

as the movement is persistent, locations are polled periodically. We sample gps

once a minute, and the decision for “one minute” sampling is done as follows.

First, as noted, continuous sampling of location data (e.g, GPS) would quickly

drain the battery of the smartphone, which would result in low usability. On

the other hand, if we sample less frequently, then we have a poor estimate of

the paths. Figure 3.4 illustrates this point more. Figure 3.4 shows 3 paths gen-

erated from three different sampling rates for the GPS. The left most path is the

original path taken with dense GPS sampling at 10 Hz. The paths in middle

and right are subsampled at 1 and 2 minutes respectively. As can be observed

from the figure, the one-minute sampling tracks the original path fairly closely.

Figure 3.4 shows this fact more quantitatively. We plot the average distance of

the original path and subsampled path for different rates of subsampling. A

graph with GPS power loss with different subsampling strategy is also shown.

We can see that 1 minute sampling of GPS can achieve a reasonable battery life
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(a)

(b)
Figure 3.4: (a) Left is the original path. Paths in middle and right figures are sampled
at 1 and 2 minutes (b) Average distance and GPS energy usage for different sub-
sampling.

loss with an average of 8 meters distance loss due to subsampling.

With this simple duty-cycling strategy, the official Android Galaxy Nexus

phone with a 1850mAh battery lasts 32.1 hours, which is a 50% improvement

over a non–duty-cycling approach (21.4 hours). Note that finding the optimal
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power-saving scheme is not the focus of our research. Our goal was to imple-

ment a scheme that would allow users to run our application, while using their

phone regularly without requiring a mid-day battery recharge.

Finally, we expect that users would not be able to carry the phone at all times

and certain activities would not be inferred accurately by our classifier [38][118].

To handle these types of omissions and errors, we gave users the option to man-

ually input physical activity from a list of 800 different activities [12] and record

the time and duration of the activity. Once the activity type and its duration

are known, the calorie loss (kilo-calorie or kcal) of the activity is automatically

computed using equation 3.1. MET or Metabolic equivalent [5] is a constant for

specific exercises (the MET value of walking is 2 and running is 8).

kcal ≡ MET ∗ body weight (kg) ∗ hours o f activity (meter) (3.1)

3.2.2 Lifelog: A journal of daily physical activity

MyBehavior summarizes the activity entries in a life-log chronologically. The

activity entries are generated automatically and require filtering in order to cre-

ate concise and meaningful activity entries. The filtering is done in two stages:

(i) a fixed-window mode filter is used to replace the instantaneous activity pre-

dictions within a one-minute window using the mode of the predicted labels,

which smoothes out spurious noisy predictions; and (ii) contiguous activities

with the same label are grouped into one episode to create lifelog entries. For

example, if a user is stationary for 50 minutes, the system will generate 50 one-

minute stationary labels and then aggregate them together into one 50-minute

stationary entry.

MyBehavior does some additional processing than simple aggregation of
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(a) (b)
Figure 3.5: (a)-Screen shot of Lifelog (b) Visualization of a lifelogged event.

similar contagious activities. For some common behaviors like driving a car

or taking a bus results in many short activity clusters in the log (e.g., walking

to the bus, sitting stationary at each bus stop, and driving between stops). For

these cases, MyBehavior generates a “mixed” activity entry in the lifelog. In

addition to the automatically-sensed activities, manually-entered activities are

shown in the lifelog as distinct entries. Furthermore, lifelog summarization hap-

pens realtime within the phone. Figure 3.5 shows an instance of a lifelog and

map visualization of a entry in the lifelog.
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3.2.3 Mining physical activity behaviors

MyBehavior use the lifelog to group similar physical activities together. For

instance, all walking near an office would be grouped together. Such groups

represent specific physical activity behavior. Manually tracked activities are first

clustered based on the type of activities. For example, all types of yoga or gym

exercises are grouped together. Automatically tracked activities with location

tags are clustered by places they occur. Clusters are found using unsupervised

machine-learning techniques to identify similarity. For Stationary activities, we

first compute a distance between two stationary point s1, s2 using the following

havershine equation.

d(s1, s2) = 2rsin−1

√sin2
(
φ2 − φ1

2

)
+ cos(φ1)cos(φ2)sin2

(
λ2 − λ1

2

) (3.2)

where s1 ≡ (φ1, λ1), s2 ≡ (φ2, λ2) are location points, and φ’s are latitudes and

λ’s are longitude values in radian units. If the distance d(s1, s2) fall within 150

meters of each other then s1, s2 are put in the same cluster. We choose 150 meters

as threshold, since stationary events often happen in indoors, and the indoor lo-

calization are often accurate up to 150 meters []. As an example for stationary

clustering, a users stationary activities in the office are typically in close proxim-

ity to each other (i.e., may be within 150 meters). Therefore, MyBehavior would

cluster these office locations into a single cluster that would represent the users

stationary behavior in the office.

Walking and running activities are more difficult to cluster because My-

Behavior needs to determine whether two activity trajectories are similar and

whether they happen in a similar location. To group similar walking or running
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events, MyBehavior uses an algorithm derived from the literature on handwrit-

ing recognition called Fréchet distance [15]. In handwriting recognition, the task

is to find a canonical letter that matches the shape or trajectory of a handwrit-

ten letter. The analogous task in MyBehavior is to find whether a new walking

trajectory (e.g., office to coffee shop) matches previous walking trajectories.

A common way to explain Fréchet distance is using the case of a dog owner

taking her dog for a walk. Although the owner and the dog take the same path,

each can choose their own trajectory. Given the trajectory of the owner and

the dog, Fréchet distance computes the minimum length of the leash required

to support these trajectories. Thus, if the two trajectories are very different,

then the Fréchet distance would be comparatively high. In our case, if the user

walks or runs multiple times in a similar path for a similar amount of time,

then the Fréchet distance would be low. However, traditional Fréchet distance

computation is expensive [15]. Instead, we use a discretized version of Fréchet

distance [47]. More specifically this algorithm finds the distance in the follow-

ing way. If M1 ≡ (M1
1 ,M

2
1 ,M

3
1 , ...,M

m
1 ) and M2 ≡ (M1

2 ,M
2
2 ,M

3
2 , ...,M

n
2) represent

two walking (or running) trajectories where each M j
i ≡ (φ j

i , λ
j
i ) is a sampled lo-

cation. Fréchet distance between M1 and M2 is computed using the following

equation 3.3:

fd(i, j) =



d(Mi
1,M

j
2) ; when i = 1 and j = 1

max( fd(i, j − 1), d(Mi
1,M

j
2)) ; when i = 1 and j > 1

max( fd(i − 1, j), d(Mi
1,M

j
2)) ; when i > 1 and j = 1

max( fd(i − 1, j), fd(i − 1, j − 1), fd(i, j − 1),d(Mi
1,M

j
2)) ; when i, j > 1

(3.3)

Thus Fréchet distance at (i, j) is computed incrementally as the highest Fréchet

distance in the local neighborhood (i.e., (i − 1, j − 1), (i − 1, j), (i, j − 1)) and the
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(a) (b)
Figure 3.6: (a) Two paths assigned to the same cluster by the Fréchet distance cluster-
ing; (b) Two paths not assigned to the same cluster by the Fréchet distance clustering.

distance between Mi
1,M

j
2. At the start, fd(m, n) is the Fréchet distance between

M1,M2. With this definition, if two trajectories are very different then the Fréchet

distance would be high in comparison to similar trajectories. Equation 3.3 is ef-

ficient with a runtime of O(nm). Figure 3.6 shows two cases where two paths

in the left figure are found similar by Fréchet distance measures whereas the

paths in the right side figure are found dissimilar. Finally, MyBehavior uses a

threshold based clustering on the Fréchet distance, similar to grouping station-

ary behaviors, to group walking and running behaviors.

Figure 3.7 shows some clusters generated by this technique. The image on

the left represents a users stationary episode in the office and home, whereas

the middle and right-hand images show two walking clusters generated by two
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different users. The middle image represents a users walks near the office, while

the cluster in the right-hand image represents another users daily walks from

home to a bus stand.

Figure 3.7: Clusters generated from user activities: (a) locations where user A stayed
stationary, (b) location traces for user B where he walked around his office, and (c)
walking traces of user A from his house to the bus stop.

3.2.4 Pros and cons of the mining techniques used for physical

activity behaviors

Other than the grouping of manually logged activities, the clustering of sta-

tionary, walking or running are performed based on locations. We used sim-

ple threshold based clustering to group similar activities. However, there are

other methods to group significant locations of an individual’s life from loca-

tion traces. Ashbrook and Starner [16] used k-means clustering in conjunction

with markov models to predict a user’s most significant locations. DBSCAN, on
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the other hand, used a probability density based estimate to group important

locations from user location traces [166][69]. A major limitation of these works

is that they only apply to stationary locations, and not applicable for clustering

walking or running trajectories. Furthermore, k-means or density based cluster-

ing applies clustering on the whole data to group similar data points. However,

such clustering may be computationally expensive in comparison to threshold

based clustering [165]. Nonetheless, it can be argued that a computationally

intensive approach may yield better accuracy. But this also requires more bat-

tery. In-the-cloud and out-of-phone computation of the clustering can be an

option, but the locations need to exported to a server which may undermine

privacy. The final reason for not using k-means or density based approach is

that infrequent locations are not considered as significant behaviors. However,

a non-significant behavior may be important for later and should not be thrown

away. As we will see later in the next chapter, the suggestion engine will de-

liberately use infrequent behaviors to diversify a user’s existing healthy habits.

e.g., an infrequent long walk from office to home can be suggested to a user,

and the user may do the activity after seeing the suggestion and make it a habit

in future. All these reasoned combined, we decided to not to use k-means or

DBSCAN in MyBehavior.

Regarding the clustering of trajectories, there are some existing research in

past literature. Krumm [83] used hidden markov model and kalman filters to

cluster similar location traces. However, a major problem with such latent vari-

able approach is the associated computational complexity; i.e., computing hid-

den values require expectation-maximization which is an iterative technique

and is computation intensive [26]. In comparison, Fréchet distance is less com-

putationally intensive. In fact, Fréchet distance has been used before to cluster
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similar locations. Shah et al. [142] used Fréchet distance to compute similar

trajectories, but the purpose was to detect identical driving behavior.

Finally, only the location based clustering is not enough to fully characterize

user behaviors. There are other aspects to human behaviors. For instance, of-

fice locations are not accessible during weekends, and the behaviors of staying

sitting in the office do not apply during the weekends. As a result, MyBehavior

reliance on location still remains a limitation to the behavior mining approach.

Despite the limitation, location is an important contextual variable. Also, lo-

cation is well-used for advertising and other context based recommendations

frequently [79][55][10]. Therefore, considering location is a reasonable practical

choice to consider in the first version of MyBehavior. Later versions can utilize

other contextual variables to further pin-point and contextualize health recom-

mendations.

3.3 Dietary behavior

A user’s dietary behavior can be understood by analyzing and finding sim-

ilar patterns of eating in the food log. The process is shown pictorially in Fig-

ure 3.8 and works in the following steps. First, a user logs a food by taking a

picture of the food (Figure 3.8a). Then the food is analyzed by a crowd-source

workers (Figure 3.8b). We have developed a hybrid technique that uses a com-

bination of machine learning and crowd-sourcing to label foods at fraction of a

cost compared to earlier literature [111]. Then these foods are grouped based

on the similarity of the labels (Figure 3.8c). In the following, I describe each of

these steps in more detail.
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Figure 3.8: Stages of mining dietary behaviors

3.3.1 Crowd-sourcing dietary food logging

MyBehavior uses a picture based logging approach to record dietary intakes.

Once the picture is taken, a common way to annotate the food is to manually

search and enter every food ingredient with their portion size to determine the

calorie. In the first version of MyBehavior, we used a manual logging approach

to log food where users select food ingredients from a The United States Depart-

ment of Agriculture (USDA) [67] database containing more than 8000 types of

food. However, we realized that manual logging approach is too cumbersome

and high-effort to continue for extended period of time. Earlier works have

reported similar findings for manual logging [40][39].

However, it is hard to understand users’ dietary behavior and personalize

suggestions without food logs. Therefore we had to find a way to increase ad-

herence to food logging. One way to reduce the burden or high effort of logging

foods is by crowd-sourcing food ingredient labeling and calorie intake. In the

crowd-sourcing approach, the user takes a photo of the food and the photo is

labeled by crowd-workers in the web with food ingredient and calorie infor-

mation. Noronha et al. [111] in their PlateMate work already validated such
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an approach where Amazon Mechanical Turk [14] (AMT) workers are used to

ascertain nutritional information. In the following, we describe an end-to-end

mobile phone implementation of this crowd-sourcing approach. In addition, we

describe a method that can reduce 50% cost of crowd food labeling compared

to Platemate [111]. Finally, we discuss the efficacy of the crowdsourcing system

which would be followed by the clustering process of grouping similar foods.

Figure 3.9: Food and calorie intake logging based on crowd sourcing using Amazon
Mechanical Turk

A typical work flow of food logging works as follows: first a user takes a

picture of the food using the application (Figure 3.11a). The picture is then sent

to a server and a Human Intelligence Task (HIT) is created at Amazon Mechani-

cal Turk (AMT), a popular crowd sourcing service. Then a set of crowd workers

or turkers in AMT look at the picture, and provide the following information:

food ingredient in the picture and an estimated calorie. Figure 3.10 shows a

screenshot of the labeling interface that a turker uses to label a food. In order to

make the task easier, we implement an auto-complete feature - when the worker

starts typing the food name, some suggestions of food appear in a window be-
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low the field. If the user selects a food, the corresponding calorie information

per portion size is automatically added to the form. Then the turker only needs

to update the food portion sizes and the number of calories is updated accord-

ingly. The food suggestions in auto-complete features contain 50 popular foods

from MyFitnessPal [106], a popular fitness application for phones. We decided

to use this approach because larger databases contain many occurrences for the

same food name which is confusing for the worker. Once the crowd-worker fills

out all the required information, s/he earns 4 cents for completing the task, and

the food information is sent and stored in the server. The server then sends the

food labels and the calorie information to the Google Cloud Messaging (GCM).

GCM then sends the food information to the Android device from which the

food picture was taken. Figure 3.9 shows the basic architecture of this applica-

tion. Figure 3.11 shows the application in action. As shown in the figure, the

app also gives users control to remove wrong labels by unchecking them.

Figure 3.10: Food and calorie intake logging based on crowd sourcing using Amazon
Mechanical Turk
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(a) (b) (c)
Figure 3.11: (a)Taking food picture in the app (b) Replies from turker about the food
image. Each replies consists of a food ingredient label and a corresponding calorie
amount (c) Replies from turkers on a Starbucks coffee.

3.3.2 Efficacy of crowd-sourcing dietary intake

We determined the improvements of MyBehavior crowd-sourcing calorie in-

formation with a pilot study. Users expressed interest to see the crowd-source

based calorie content of the foods and were satisfied with the accuracy of food

labeling and clustering. Specifically we counted the number of foods logged per

day over 3 weeks. We have found that the number of foods recorded per day per

user with crowd-based approach (µ = 4.2, σ = 2.5, q25 = 2.2, q50 = 4.1, q75 = 6.0)

is higher than the manual logging approach (µ = 2.4, σ = 1.7, q25 = 1.4, q50 =

2.0, q75 = 2.9). This increase is also statistically significant (Wilcox ranksum test,

z = 2.5, p = 0.013).
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3.3.3 Limitations of crowd-sourcing dietary intake: cost

The increase of food logging with the crowd-sourcing approach is beneficial

for understanding user behaviors in greater detail. However the increased ad-

herence also means that the crowd-workers have to be paid. If the cost of hiring

crowd-workers can be reduced then end-cost can be reduced largely. In the fol-

lowing, we propose a technique that would reduce the cost of crowd labeling of

food by 50%. [126] describes more details of this approach.

3.3.4 Getting accurate crowd-sourced labels cheaply

In traditional crowd-sourcing approaches to food label, each image is labeled

by a set of paid workers. Then another set of paid workers review if the labels

are correct. The most correct food labels are then defined as final food labels

(Figure 3.12a). Such a method is oblivious to a worker’s past history of how

well s/he performed in labeling tasks. However, some workers are consistently

good at labeling while some are bad. Therefore, it is not necessary to verify

every food label by another set of paid workers, since labeling quality is likely

to be good if the image is labeled by high quality labelers. If costs for such

verification workers are removed then the total end saving would be significant

in large scale deployments where large number of images would be labeled.

Given this insight, we propose a worker performance aware approach (Fig-

ure 3.12b), where we maintain a set of high performing labelers to gain high

labeling accuracy. We also construct a machine learning model that can deter-

mine high performing labelers automatically. The model can look at the reply

patterns of labelers and predict their food labeling performance with no cost.
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Figure 3.12: (a) Traditional methods doesn’t distinguish between bad or good quality
workers. These methods use paid workers to verify food labels to ensure good qual-
ity. (b) our approach keeps track of good quality workers and engages them only for
good quality food labels.

Dataset

The machine learning model to predict turker performance would be con-

structed on a dataset of 3925 food images captured real users. 1801 unique turk-

ers labeled these images for content with a total of 27784 turker replies (each

reply corresponds to one HIT). Since not all turker replies were accurate and

it is hard to verify how accurate all the 27784 turker replies, we select a repre-
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sentative sample of turker replies and reason about different turker’s labeling

performance. We uniformly select a random sample of 1200 replies out of 27784

replies and verified their quality as acceptable or not1. 2 independent verifiers of

our research team judged the turker provided labels for acceptability. If there is

a disagreement with a label’s quality then another verifier judged for acceptabil-

ity. A turker label is considered acceptable if 2 or more verifiers considered the

label to be acceptable. A similar approach to our accepting or rejecting turker

replies was used by Thomaz et al. [152]. For rest of the paper, the percentage of

“acceptance” for a turker’s replies is referred to as ground truth accuracy. After

the accept/reject process, 70% of turker labels are found acceptable.

A model to identify worker performance

Reply patterns of high and low performing turkers are different. In this section,

we propose a machine learning model that exploits the reply pattern differences

to predict turker performance. We first introduce some notations. Then we

describe the features and machine learning model which we later evaluate. We

denote set of turkers as T = {t1, t2, t3, ..., t|T |}. The set images labeled by a turker ti

is denoted by Pi = {p1
i , p2

i , p3
i , ..., p|Pi |

i }. Note here the same image can be labeled

by multiple turkers. The words replied in image p j
i by turker ti is denoted by

set r j
i = {r

j
i (1), r j

i (2), r j
i (3), ...}. For example, if a turker ti replies to image p j

i with

steak, salad, and fries then r j
i (1), r j

i (2), r j
i (3) will be respectively “steak”, “salad”,

and “fries”. Finally, ground truth accuracy for turker ti is denoted by yi. Since

replies from all turkers are not included in the subsample of 1200 replies in our

dataset, yi is not defined for every ti.

1The labeling interface: http://goo.gl/uWabGy
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Features

We introduce several metrics that quantify the difference between high and low

performing workers’ reply patterns. We also illustrate the efficacy of the metrics

with visualization and verbal explanation. We then use these metrics as features

for a predictive model.

Turker’s reply frequency: Infrequently replying workers often provide highly

accurate labels whereas the frequently replying workers can be high or low per-

forming. Fig 3.13c shows the distribution of ground truth accuracy for infre-

quently replying turkers that replied less than 100 times. Large percentage of

these turkers replied with high accuracy. Such turkers constitute nearly 83% of

our total 1801 turkers in the dataset with 13% of 27784 total replies. For the re-

maining 87% replies from turkers with more than 100 replies each, the ground

truth accuracy is mixed with both high and low performances as shown in

Fig 3.13d. Another way to look the same phenomenon is the changes in cumu-

lative ground truth accuracy as more frequently replying turkers are considered

(Fig 3.13e). Mathematically, the Y-axis corresponding to the X-axis or number of

replies by a turker is
∑|T |

i=1 yi∗|Pi |∗1[|Pi |≤x]∑|T |
i=1 |Pi |∗1[|Pi |≤x]

. i.e., we include turkers that replied less than

x times and weight the ground truth accuracy with frequency of replies to give

more importance to highly replying turkers. From Fig 3.13e, we see turkers with

less than 10 replies and 100 replies, the cumulative ground truth accuracies are

around 93% and 85%. However, as more high replying turkers are considered

the accuracy drops to 70%.

Match index: Replies from under performing turkers consistently do not match

with replies from other turkers for same food images. However, the opposite is

true for high performing labelers. This happens because for each image some
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Figure 3.13: (a-b) Turkers replying to larger number of requests sometimes have low
ground truth accuracy (c) Turkers who replied less than 100 HITs generally had high
percentage correct labels (d) Ground truth accuracy varied widely for turkers who
replied more than than 100 HITs (e) Cumulative accuracy as more higher replying
turkers are added. Cumulative accuracy was nearly 85% for turkers replying less
than 100 HITs (f) Distribution of match index and information gain (g) interaction of
match index and information gain correlates with ground truth accuracy (h) Labeling
accuracy for turkers replying to larger number of requests have high correlation with
end user acceptance.

labels are accurate, since 70% of the replies in the labeled dataset are acceptable.

Thus on the same image, accurate labels from a high performing would consis-

tently match with other accurate labels from another high performing turker.

However for low-performing turkers, their wrong labels would not match with
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accurate labels from high performing turkers. In fact, low-performing turkers

wrong labels would not even match wrong labels of another low-performing

turkers since low-performing turkers can not co-ordinate. With this intuition,

we calculate a match index MIi j for an image p j
i a turker ti replied to as follows:

fraction of words in the ti’s reply to p j
i that matches replies of other turkers to p j

i .

Before the matching, we preprocess the data with simple stemming from Natu-

ral Language Processing literature [25]. After stemming, ‘Apple’ and ‘Apples’

are considered identically. We then compute a match index MIi for turker ti by

computing the average of all match index measures MIi js. The exact equation

of match index MIi is as follows:

MIi =
1
|Pi|

|Pi|∑
j=1

MIi j, and MIi j =

∑|r j
i |

k=1 1[r j
i (k)∈r j′

i ]

|r j
i |

where r j′

i is defined as the set words replied by turkers other than ti for image

p j
i . Intuitively, the above equation means if the words of a turker ti’s reply is

contained in replies from other turkers to the same image then the MIi j would

be high. Now accurate replies from a turker has a high chance to match replies

other high performing turkers. Thus a high performing turker will have high

MIi js which means the average of MIi js denoted as MIi would also be high.

Information gain: Often under performing turkers use a small set food names

for all replies. i.e., replies from under performing turkers lack diversity. On

the other hand, replies from high performing turkers exhibit sufficient diver-

sity, since food labels would be different if different users eat different foods.

We compute this diversity with an entropy or information gain measure in the

following two steps (1) we first construct a dictionary D with unique words

{d1, d2, d3, ..., d|D|} contained in aggregate replies from turkers. We pre-processed

the words using stemming techniques from natural language processing [25] (2)
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then we compute entropy with the following equation:

entropyi = −

|D|∑
j=1

pi j log pi j

where pi j =

∑|Pi |

l=1

∑|rl
i |

k=1 1[rl
i(k)=d j]∑|Pi |

l=1

∑|rl
i |

k=1 1

According to the above equation, if the food labels are predictable then entropy

is low whereas if food labels are less predictable then entropy would be high.

As a result, if turkers replied accurately then their replies would have high di-

versity and their entropies would be high compared to low-performing turkers.

Figure 3.13f shows the distribution of match index and information gain. In

the figure, the large blue dots representing highly replying bad quality turkers

are largely located where both information gain and match indices are low. Fig-

ure 3.13g shows the relation more prominently where ground truth accuracy

positively correlates with the interaction [115] between match index and infor-

mation gain (r = 0.48, p = 0.001).

End-user acceptance rate: Throughout the user study, we gave end-users to cor-

rect some of the labels provided by the turkers (see Figure 3.11(b-c)). We com-

pute user acceptance rate of a turker as percentage of the turker’s labels ac-

cepted by end-users. This user acceptance rate strongly correlates with ground

truth accuracy (r = 0.77, p < 0.0001). Figure 3.13h shows this correlation of

user acceptance rate with ground truth accuracy. However, user-corrections are

relatively rare and only 1% (168/27784) turker replies were corrected by end

users. Importantly, end-user corrections is more available for frequently reply-

ing turkers. 93% turkers replying more than 700 replies received some end-user

corrections. In contrary, only 13% turkers under 700 replies received end-user

correction.
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Turker performance identification model

In this section, we formulate two machine learning regression models to identify

turker performance or ground truth accuracy. One model uses the end-user

acceptance rate feature and the other does not. The model without the user

acceptance rate feature is as follows.

y′i = β0 + β1 ∗ MIi + β2 ∗ entropyi + β3 ∗ entropyi ∗ MIi

where y′i is the predicted ground truth accuracy. We add an interaction term

between match index and information gain since such interaction correlates sig-

nificantly with ground truth accuracy. Our second model uses end-user accep-

tance feature. However, we can use end-user acceptance features for only high

replying turkers where the feature is more available. The second model is as

follows:

y′i =



β0 + β1 ∗ MIi + β2 ∗ entropyi

+β3 ∗ entropyi ∗ MIi, where |Pi| ≤ C

γ0 + γ1 ∗ MIi + γ2 ∗ entropyi

+γ3 ∗ entropyi ∗ MIi + γ4 ∗ user acci, otherwise

where a separate linear regression model is used with end-user acceptance fea-

ture only when the turker ti replied more than some constant C number of times.

Finally, we fit the above regression model in piecewise manner [26] for differ-

ent turker reply frequency interval. This was done based on earlier observation

where turker performance was found to be dependent on frequency. For a win-

dow size of 100 in frequency or |Pi| (i.e., 0-100, 100-200, 200-300 and so on), we

formulate a different linear regression.
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Accuracy of food content labeling

We evaluate the labeling performance of our models in two ways: (1) in an

offline evaluation, where we count how many wrong labels are removed from

our dataset if we discard low-performing turkers as predicted by our model (2)

an online evaluation, where we label new images by turkers that exclude low-

performing turkers as predicted by our model. The accuracy of the labeling is

then compared with several control conditions.

Offline evaluation: We investigate the fraction of remaining accurate labels, if

labels of low-performing turkers from our model are excluded from our dataset.

Such a measure would indicate labeling accuracy without bad-labelers in an of-

fline setting. We do the evaluation in two steps (i) we predict labeling perfor-

mance of different turkers based on our model (ii) we estimate the percentage

of remaining accurate labels after removing low-performing turkers from our

model. To predict labeling performance of a turker ti, we train a model with

features from T − ti and predict the accuracy y′i from the model for ti. Such leave-

one-out evaluation is commonly referred as cross-validation to demonstrate gen-

eralizibilty in machine learning. Furthermore, the model trained over T − ti has

zero knowledge of the replies of ti. Thus the prediction for ti indicates the way

our model would perform for an unknown turker. Given y′i , the quantity y′i ∗ |Pi|

would indicate the expected amount of accurate labels from ti with our model.

Specifically we examine a metric called expected labeling accuracy, which is de-

fined as
∑|T |

i=1 y′i∗|Pi |∗1[|Pi |≤x]∑|T |
i=1 |Pi |∗1[|Pi |≤x]

, to demonstrate efficacy of our model. Here 1 is a indicator

function and the denominator is a normalization term. Intuitively, the expected

labeling accuracy means the cumulative labeling accuracy we can expect if only

turkers replying to x number of queries are considered.
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Figure 3.14a shows the results. We first define a worst and best case of expected

labeling accuracy for different values of x (i.e., number of replies by turkers).

The green shows expected labeling accuracy if no bad turkers are removed.

This is the worst case scenario for our model. The blue curve on the other hand

shows a upper limit or best case, where we discard all turkers with 60%2 or less

accuracy (i.e., ground truth accuracy) known in the labeled training set. Now

the red curve shows the expected labeling accuracy if we exclude turkers with

a predicted accuracy of less than 60% using the model without user acceptance

rate. As can be seen that the model always performs better than worst case.

Specially the expected labeling accuray is around 83% if the number of replies

from a turker is less than 700. However after including turkers with 700 or

more replies, the model performance deteriorates. A possible reason for deteri-

oratation is the heavy tail nature of the turker reply distribution and there is not

enough points to learn a reliable model with low number of turkers that replied

higher than 700. On the other hand, if we use the model with user acceptance

rate for C = 700 then we get the black line in Figure 3.14b. This model main-

tains accuracy of near 83% throughout where the possible upper limit model

accuracy is around 84%.

Online evaluation: In online evaluation, we investigate labeling performance

in a real-life deployment of our predictive algorithm. We upload a set of 30 im-

ages and get labels for these images. These image are randomly selected from

our dataset. We check how many accurate food labels we receive if we remove

low-performing turkers as predicted by our algorithm. Since a proper eval-

uation needs comparison with baseline conditions, we evaluate against three

conditions when (a) no bad turkers are removed (b) against “master turkers”,

260% is chosen heuristically. Other accuracy numbers also achieve similar results
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Figure 3.14: (a) Predicted accuracy model. If turkers are chosen based on predicted
accuracy. Turkers with less than 60% accuracy are discarded. (b) Accuracy of an
online deployment of our system.

a list of high performing turkers in Amazon Mechanical Turk (c) with label and

verify approach used in earlier work [111]. For label & verify, we recruited 5

turkers for labeling and 5 turkers for verifying. For each turker, we paid $0.04.

For “master turkers”, we could not get master turkers at $0.04. We paid $0.15

for each label from master turkers and recruited 5 master turkers for each food

image.

2 independent evaluators in the research team judged how many of these

labels were acceptable. If there is a disagreement then a 3rd evaluator judged

the labels. Labels are considered acceptable if they are accepted by two or more

times by the evaluators. A similar approach to our accepting or rejecting turker

replies was used by Thomaz et al. [152]. Figure 3.14b shows percentage of ac-

ceptance. Acceptance after removing low-performing turkers with our method

(88.7%) outperforms the control condition with no bad turkers removed (72.9%).

Master turkers approach performed similarly to our approach (90.5%). Label

and verify approach, where we considered food content labels that were ac-

cepted by majority of verification turkers, are 92.3% accurate. Although both
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Figure 3.15: (a) distribution of match index and information gain on small windows
of turker replies. Relatively red dots represent low quality turkers as defined by
ground truth accuracy (b) same as ‘a’ but more red color of a dot is due to accuracy
inferred by our model (c) evolution of inferred accuracy on small windows of turker
replies.

master or label and verify approach performed with similar accuracy our ap-

proach, these approaches cost significantly more than our approach. We will

discuss the cost proposition in more detail later.

Early detection of under-performing workers

So far, we built a model to identify a turker’s performance from the turker’s

total history of replies. However an important problem is to detect low per-

forming turkers early, so that they can be warned and eventually be removed

before they adversely affect the labeling.

Previously discussed features also perform well for early detection of low-

performing turkers. Figure 3.15a shows the match index and information gain

for a window of 50 replies for turkers with more than 500 replies (i.e., both good

and bad quality turkers)3. Dots from turkers with low quality replies are shown

in more red colors (solid red is 0% ground truth accuracy) whereas a good qual-

ity turker is shown in more green color (solid green is 100% ground truth ac-

3We do not turkers with less than 500 replies since the number of turkers are large and they
are generally high performing. Thus including them in the visualization and discussion will
crowd the figured unnecessarily. However, in our evaluation we get very similar results for
turkers with less than 500 replies.
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curacy). The red dots, with low values of information gain and match index,

are clearly separated from green dots. A linear regression model can learn these

differences. Figure 3.15b shows the results of a 10 fold cross validation results

(i.e., only predicted values are shown) of the linear regression model. Again

we color code the dots similar to Figure 3.15a but with inferred accuracy rather

than ground truth accuracy. We can see Figure 3.15b closely matches with Fig-

ure 3.15a.

In order to demonstrate early detection performance, figure 3.15c shows the

predicted accuracy on windows of 50 replies over time. Each curved line in the

figure is a turker and more green lines represent high performing turkers (i.e.,

with high ground truth accuracy). A line representing low performing turker is

shown in a more red line. Predicted accuracy in Y-axis at a point x on X-axis rep-

resent predicted accuracy on the window of [x−24, x+25] replies. i.e., predicted

accuracy at x = 500 is computed from 476th to 525th replies. In figure 3.15c,

more red color lines representing low-performing turkers consistently show low

predicted accuracy (i.e., below 50% predicted accuracy) overtime. Thus within

50 replies, it is possible to understand which turker might be low performing.

Furthermore, the green lines representing high-performing turkers also show

high predicted accuracy, thus a high-performing turker would not be flagged as

low performing with a cut off of 50% predicted accuracy.

Cost vs performance analysis

Our system can identify turker performance and early detect bad turkers. How-

ever, how much does our system cost to label foods? Furthermore, is the end

accuracy acceptable? Our system requires $0.2 to label a image where we recruit

5 turkers, at $0.04 each. According to section 4.3.2, 88.7% of these turker labels
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are accurate. However if we deploy traditional label and verify [111] then we can

get an accuracy of 92.3%, although it requires an extra $0.2 per image to filter

wrong labels with additional turkers at $0.04 each. Finally, if we use master

turkers - a set of high quality turkers maintained by Mechanical Turk - then we

get 90.5% accuracy. However, assigning master turkers requires a steep price of

$0.15 per label [152] with $0.75 per image.

The small accuracy loss would not affect end accuracy significantly, though our

method costs significantly less. Our method incurs 50% and 73% less than all

verify and master turker based approach respectively. We do so with an 1.8%

less accuracy than master turkers and 3.6% less accuracy than earlier work [111].

The end effect 1.8% and 3.6% accuracy loss is minimal given we use majority

voting [23] to decide final labels for an image: if 88.7% of turker labels are ac-

curate then may be only 1 out of 5 labels received for an image can go wrong.

Thus if we use a majority vote to select right labels then the wrong labels will not

be likely included in the final set of labels. Therefore our approach can create

accurate labels with 50% or less cost than competing techniques.

Limitations of worker aware approach

Lack of Long Term Field Evaluation: Despite the efficacy of our system in on-

line and offline evaluation, it is unknown on how our solution will perform in

real life longitudinal trials. However, it is not easy to work around our features.

e.g., to get around information gain, a turker needs to consistently give garbage

food labels that do not match with other labels to increase information gain. It

is even harder to go around match index since wrong labels would not match

with right labels by other high performing turkers.

63



Calorie Contents of Foods: In this work, we did not address the estimation

of food calorie amounts. Measuring appropriate calorie amount from just food

picture is unreliable, since it is hard to estimate size of foods from pictures.

Furthermore, sometimes users do not consume the whole food in a picture. As

a remedy, we give users control to adjust portion sizes. Then we use the portion

size and calories per portion size to measure calories in the food.

Other Limitations: Although Amazon Mechanical Turk allows for incentiviz-

ing turkers, we do not incentivize high performing workers. It remains to be

seen whether incentivizing the turkers increase turker performance even more.

Furthermore, end user corrections are needed to reliably predict performance

of frequently replying turkers. We can run similar correction step with other

turkers and remove end-users dependence completely from the system. Finally,

our approach advocates for selection and engineering of crowd-workers. Since

crowd-workers are human labors, there are ethical concerns of our approach.

However, we feel that our smart and cost-effective approach would create eas-

ier opportunities for larger scale data collection. Larger sized data then can en-

able completely automated food content labeling solution with machine learn-

ing that would not require crowd-worker manipulation.

3.3.5 Mining dietary behaviors

Once a user’s dietary behaviors are understood from food logs, we do a sim-

ple food ingredient matching to group similar foods. For example, under this

scheme burgers with similar ingredients will be grouped together. Figure 3.16

shows 3 different clusters found using this method.
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(a) (b) (c)
Figure 3.16: Three separate dietary behaviors. (a) pizza eating behavior for a user (b)
banana eating behavior for the same user (c) bagel eating behavior for another user

3.3.6 Pros and cons of the dietary behavior mining approach

The dietary behavior mining approach solves several practical problems

namely using crowd-sourcing to increase logging and reducing cost. The hu-

man effort from crowd-sourcing was required, since the food detection task is

still hard for a computer to automatically do.

However, the research on automated detection of objects in images is pro-

gressing rapidly due to the recent advances in deep learning [21]. Krizhevsky et

al. [82] demonstrated breakthrough improvements in object recognition on the

ImageNet dataset with Deep Convolutional Network [21]. The research clas-

sified the 1.2 million images into 1000 categories using a deep neural network

with nearly 60 million parameters and 650,000 neurons. GPU computing was

used to train the network. But it is hard to do the same at this point for day-

to-day food image recognition, because it is hard to get a food database at the

scale of million labeled images and perform the high amount of computation
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inside a phone. However a positive side is that, when a neural network are pre-

trained at the scale of millions of images then the neural network can be reused

for other image recognition tasks also. The plateclick [162] and im2calorie [100]

works have used the pre-trained model from Krizhevsky et al. [82] to classify

food images into categories and calories. Nonetheless, these automated food

recognition research are still at a nascent stage, and the automated food catego-

rization can categorize only stock food image photos or images from restaurant

menus. But as more labeled food images become available, the deep networks

will be able to better classify food images at nearly no cost.

3.4 System footprint

Excessive CPU cycles and memory usage can limit the battery life and user

experience. In this section, we briefly describe how MyBehavior saves battery

and memory during the behavior mining process. We discuss the performance

of CPU and memory benchmarks for classifying physical activity and behavior

mining. Note that, the food pictures taking and crowd-sourcing calorie esti-

mates run 2-3 times per day and are not performance hogs.

CPU use Memory use Duration
GUI only 0% 9MB
Activity Inference 0% 9MB continuous
Activity clustering 2% 19MB 1.5 sec

Table 3.1: CPU and Memory usage with duration for physical activity sensing and
behavior mining

Table 3.1 shows a table of CPU and memory usage of different stages of

behavior mining process. Since clustering and suggestion inferences are not

continuously run and they are performed once a day. In order to make clus-

tering more efficiently, we use an online clustering method called BIRCH [165].
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Other than the clustering, the major power-hog in the system is the activity

tracking since it is carried out continuously. However due to the duty cycling

approach described earlier, we achieved a more than one day battery life on

the Galaxy Nexus phone (32 hours). Furthermore, in modern smartphones the

activity recognition is moved at the hardware level with low-power processing

units to save battery [143]; e.g., iPhone’s motion processor [157] and Android

sensor hub [59] can infer physical activity at the chip level to save battery.

67



CHAPTER 4

HEALTH FEEDBACK AS A MULTI-ARMED BANDIT PROBLEM

In the last chapter, we discussed different techniques to collect and analyze

physical activity and food data. We also described several techniques to find

patterns of physical activity and dietary behaviors. In this chapter, we detail

how MyBehavior utilizes the behavioral patterns to generate personalized food

and physical activity suggestions. First, we provide an overview of creating

suggestions with a Multi-armed bandit algorithm that is grounded in psychol-

ogy theories of behavior. Then we provide specific technical details of the Multi-

armed bandit formulation for physical activity and food suggestions, and how

the clusters extracted in the earlier chapter are used. We end the chapter with a

pilot study that used MAB and discuss the success and the lessons learned.

4.1 An overview of grounding suggestion in Multi-armed

bandit and behavior change theories

MyBehavior’s suggestions-generating strategy is grounded in contemporary

behavioral science theories: (1) learning theory [97], (2) social cognitive the-

ory [17], and (3) the Fogg Behavior Model (FBM) [52]. Behavior analysis applies

learning theory first to assess whether a person has the skills needed to per-

form a behavior [28]. If so, the next step is to increase or decrease the target

behaviors frequency by harnessing its antecedents (ie, its setting and cues) and

consequences (ie, reinforcement). For example, if a health suggestion asks a

user to swim but the user can’t swim (i.e., he never acquired the skills), the user

will not follow the suggestion. On the other hand, if a person has performed
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a behavior before, even if rarely, the skills can be assumed present. The Fogg

Behavior Model applies theoretical principles to technology design by creating

tools to prompt low-effort actions that can be triggered even when motivation is

low [52]. Thus, MyBehavior suggests (ie, cues or triggers) a frequent behavior

(eg, a particular walk) that the person often does in a particular life context. This

small, low-effort change simply increases the frequency of a behavior that the

person already does. Sometimes, instead, MyBehavior suggests an infrequent

behavior (eg, bike ride) that would burn more calories and that the person has

shown he/she can do, but does only rarely. Social cognitive theory [17], the

most widely used behavioral theory, suggests that in order to voluntarily initiate

an action, a person needs a sense of self-efficacy or confidence that he/she will

be able to perform it. The more frequently the person can be triggered to ride

a bike repeatedly in a certain context where bikes are accessible, the more self-

efficacy increases, the less effortful the behavior becomes, and the more likely

that bike riding becomes a habit.

MyBehavior operationalizes the above theory and formulates the sugges-

tions generation process as a Multi-Armed Bandit model. The key idea behind

this modeling strategy is the inherent exploration and exploitation trade-off that

defines the task of making suggestions. The goal is to optimize longer-term

heath benefits by making recommendations that are relevant and actionable.

Exploitation would correspond to seeking high short-term gain by suggesting

the most frequent healthiest activity that the user has already engaged in (or

suggesting to eat the most healthy, previously eaten meal/snack). Exploration,

on the other hand, would be to suggest activities/food that the user performs

less frequently or is less healthy than the best activities/ food for the user (so

appearing suboptimal), in order to explore if the user is likely to engage in these
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activities/foods. Exploration can lower short-term benefit, since these “subop-

timal” activity/food suggestions are not lower effort by prior theoretical insight

and does not have the same chance to be acted upon as the exploit suggestions.

However exploration is necessary to accurately understand the space about the

activities/food a user is likely to perform/eat in the long run. This knowledge

helps craft a strategy that achieves the best long-term health outcome.

In addition to exploit-explore, an important side case that needs to be con-

sidered is the lifestyle. i.e., behaviors that were more common or more fre-

quently repeated in the past may not be repeated. e.g., due to seasonal changes,

playing outdoor soccer may be impossible to do in cold weather. The simple

exploit/explore strategy described earlier would slowly adapt to such changed

circumstances. There are faster ways to adapt to such changes. A subclass of

MAB models called the adversarial bandits can tackle such changes and adapt

to changed circumstances more quickly. In MyBehavior, we use an adversar-

ial bandit that use exploit/explore when lifestyle does not change, but can also

adapt to changes in lifestyle if that happens.

In the following, we explain in more details on how personalized sugges-

tions are generated. We first introduce the general multi-armed bandit model.

We then elaborate on how we use the multi-armed bandit model to create per-

sonalized suggestions by utilizing the activity and food clusters.

4.2 A brief overview to MAB

In a multi-armed bandit setting [130], a gambler faces a row of K slot ma-

chines {C1,C2, ...,CK}, with unknown reward distributions {ν1, ν2, ..., νK} (with re-

spective means {µ1, µ2, ..., µK}). The gambler has to pull the arms of n slot ma-

70



chines in a sequence over time, including repetition. Let at time instance t the

gambler chooses a slot machine Ct, and a random reward r̂Ct ,t is given by draw-

ing from the slot machine’s reward distribution νt. Now, if µ∗ = maxi{µi} is the

maximal reward mean, then the optimal strategy would be to choose the associ-

ated slot machine every time. However the information of the best slot machine

is unknown to the gambler and she can only approximate the reward distribu-

tion of different slot machines while receiving r̂Ct ,t at different time instances.

The principal challenge that the gambler faces is to choose a slot machine at

time t so that the difference between the reward sum associated with optimal

slot machine (i.e., with mean reward µ∗) and the sum of collected rewards is

minimized. The difference is commonly referred to as regret ρ, and formally the

gambler tries to minimize ρ = nµ∗ −
∑n

t=1 r̂Ct ,t.

Given the standard bandit setting described above, there are two kind of

bandit problems (i) stochastic bandits where the underlying distribution for

{ν1, ν2, ..., νK} is fixed (ii) adversarial bandits where the underlying reward distri-

butions for slots {ν1, ν2, ..., νK} can change. Often the stochastic assumption is not

sufficient for real world problem, where reward distribution of arms can change

overtime. For instance, if MAB is used to model user preference for getting web

clicks, where a category web link recommendation, e.g., NFL or NBA, is an

arm and getting a click is equivalent to receiving an award, then user prefer-

ence might change overtime for some category, e.g., NFL season nearing Super

Bowl. Therefore an adversarial setting might fit the changing user preferences

better than stochastic counter part. A common strategy to incrementally select

slot machines is the Exp3 strategy. Exp3 works as follows: if there is no under-

lying change in the reward distribution then Exp3 exploits the most rewarding

suggestions and seldom randomly explores other suggestions. Explore is neces-
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sary since at any point it is not known which are the most rewarding arm in the

long run. However, if the underlying distribution of reward function changes

then Exp3 adapts. Bubeck et al. [29] has more mathematical details on how the

Exp3 adapts, but in the following we give some intuition. Exp3 maintains a

probability distribution of selecting for the arms. Let us denote the probabilities

as {p1, p2, ..., pK}. Normally the most rewarding arms have the highest proba-

bility values to selected since there is high chance of maximizing rewards: i.e.,

for an arm Ci if the recent rewards of νis are high then pi would be also high.

However, when the reward for an arm changes then two cases can happen (i)

reward νi of a previously less-rewarding slot Ci increases. In that case, pi is low

since νis were low before. Exp3 recognizes this mismatch and increases pi so

that next time Ci is selected more (ii) reward of a previously high-rewarding

slot Ci decreases. However pi is high in that case since νi was high before. Exp3

appropriately reduces the pi value so that Ci is selected less.

4.3 Health suggestions as an MAB

In the earlier section, we provided an overview of the suggestions gener-

ation process that utilizes health behavior change theories inside of an MAB.

In this section, we provide more details of the MAB, and how it uses uses the

behavioral patterns extracted in the earlier chapter.

4.3.1 Physical Activity Suggestion Generation

Let {CA
1 ,C

A
2 , ...,C

A
kA
} denote all the activity clusters, where kA is the total num-

ber of clusters. Each cluster CA
i can be either a stationary, walking, running or

manual input exercise type generated using the process described in the earlier
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chapter. An element in CA
i , denoted by cA

i, j, represents a real-life instance of an

activity (e.g., a 5-minute walk to a coffee shop from the office), and each cA
i, j has

an associated number of minutes, minute(cA
i, j), representing how many minutes

the activity lasted. Using minute(cA
i, j) and the MET score associated with cA

i, j’s

activity type, we can compute the amount of calories, denoted by ν̂A
i, j, spent in

doing cA
i, j. And with a calorie count for each cA

i, j ∈ CA
i , we have a distribution ν̂A

i

of calories for the cluster CA
i .

With the information about CA
i and corresponding ν̂A

i , we can use a multi-

armed bandit to suggest actions from user’s past history. However, there are

two more practical adjustments we make. First, even though we can suggest an

action to be repeated for non-stationary activity clusters, we can not do the same

for stationary activities. Many of our participants emphasized that they became

aware of their long stationary periods after using MyBehavior and wanted to

introduce small breaks between their ongoing daily activities. Therefore, we

encourage users to make a small change in their activity habits by suggesting

3 minutes of walking for every hour that they were detected as being station-

ary. To accomplish this, for an activity cA
i, j representing a stationary episode, we

adjust ν̂A
i, j assuming

[
3 × minute(cA

i, j)/60
]

minutes of walking in cA
i, j. As a result,

we make suggestions that include incorporating small changes in sedentary pat-

terns in addition to capitalizing on health activities that the users already engage

in.

The second adjustment we make is based on the frequency of repetitions of

an activity. This adjustment is made due to low-effort and self-efficacy theories

described before. If we form a reward function for a bandit with the current

definition of ν̂A
i , we would always choose the activity clusters that result in the
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(a) (b) (c)
Figure 4.1: MyBehavior app screenshots (a) a set of activity suggestions for a user (b) a
set of suggestions at a different time for the same user (c) a set of activity suggestions
for a different user

highest calorie expenditure. For instance, if a weekly gym session or running on

a treadmill (manually entered) is one of the activity clusters, the bandit would

suggest that as a top action. But if the user takes many shorter walks near her

workplace (e.g., 30 instances of 6-minute walks), s/he can potentially burn at

least as many calories as a gym visit and more easily fit the activity into a daily

routine. We incorporate this observation by defining a new function, νA
i, j = ν̂

A
i, j ×

|CA
i |, where |CA

i | is the number of activities similar in duration within CA
i .

With these adjustments in place, we run a kA-multi-armed bandit model with

{CA
1 ,C

A
2 , ...,C

A
kA
} arms with rewards distribution {νA

1 , ν
A
2 , ..., ν

A
kA
} (with respective

means {µA
1 , µ

A
2 , ..., µ

A
kA
}). We pick the 10 top suggestions (given kA ≥ 10) using the

Exp3 strategy. 90% of the suggestions are exploited and the 10% are randomly

chosen as explore suggestions. If kA < 10 clusters are present, then we generate

kA suggestions. In our experiments, after a week of using the system, all of our
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users had provided sufficient data such that kA ≥ 10. Figure 4.1 shows different

suggestions generated by MyBehavior. As seen in the screenshots, semantically

meaningful messages are added with every suggestion. For suggestions gener-

ated by exploiting, MyBehavior asks the user to either continue positive activi-

ties (i.e., good calorie foods, walking, or exercise), make small changes in some

situations (i.e., stationary activities). On the other hand, suggestions generated

during exploration phase, the system asks the users to consider trying out the

suggestions. All MyBehavior suggestions change overtime and are different for

different users. Figure 4.1(a) and (b) are physical activity suggestions from the

same user on different days. Figure 4.1(c) shows suggestions generated for a

different user demonstrating the personalization capability of the system

4.3.2 Dietary Suggestion Generation

As mentioned earlier, we utilize a separate bandit with a similar reward

function to construct food suggestions. We make a distinction between sug-

gestions for meals and those for snacks (as the number of calories consumed are

quite different for these two groups of food clusters), but the bandit optimiza-

tion process is same for both. Considering {CF
1 ,C

F
2 , ...,C

F
kF
} are the food clusters

computed during clustering, and cF
i, j being a meal in CF

i with calorie cal(cF
i, j), we

compute a function νF
i, j = cal(ci, j)) × |CF

i |. Similar to activity suggestions, we get

a distribution of νF
i, j values for each CF

i , which we denote as νF
i . Considering

{CF
1 ,C

F
2 , ...,C

F
kF
} as slot machines with reward distribution {νF

1 , ν
F
2 , ..., ν

F
kF
} (with re-

spective means {µF
1 , µ

F
2 , ..., µ

F
kF
}), we run a multi-armed bandit process with Exp3.

Top suggestions from the bandit prefer frequent meals with low calories com-

pared to unhealthy ones. If a high-calorie food shows up as a suggestion—

which can happen during bootstrapping—we still suggest the food but with a

75



message indicating that it should be avoided.

4.4 Feasibility pilot study

We follow the guidelines of Klasnja et al. [80] to evaluate HCI technologies

for behavior change, and evaluated the first version of MyBehavior with a small

scale pilot trial. The authors in [80] argued that testing a novel HCI behavior

change approach with a randomized control trial (RCT), the gold standard for

quantitatively evaluating interventions, is not the best initial strategy. RCTs

often treat the technology as a blackbox without looking into details of why it

is working or whether there are opportunities for improvement. Klasnja et al.

suggested researchers to conduct small initial pilot trials to verify whether the

technology works in practice and if improvements can be made to maximize the

impact of the technology.

To that end, we specifically wanted to evaluate the following research ques-

tions: (1) Are MyBehavior suggestions personalized and actionable? Is there

evidence that users with personalized suggestions follow a healthier lifestyle?

(2) Is there evidence of participants making use of multi-armed bandits exploit-

explore strategy during the study? (3) What aspects of MyBehavior are working

well? Does any aspect of MyBehavior need improvement before we deploy My-

Behavior in a longitudinal trail?

In order to answer these questions, we conducted a 3-week pilot study

of MyBehavior. We compared MyBehaviors personalized suggestions to pre-

scriptive suggestions (i.e., pre-specified suggestions that are not personalized

to users lifestyle) in a between-subject experiment. We collected a variety of

data such as interviews, rating surveys, daily diaries and sensor tracked be-
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havior to evaluate MyBehavior. Methodologically, we took a more pragmatist

mixed-method [151] perspective. We triangulated the various data sources to

understand whether MyBehavior is effective in providing users personalized

and actionable suggestions. In this phase, the emphasis was on developing a

viable automated approach to generating behavior change suggestions that is

grounded in behavior change theory as well as decision theory and validate its

computational feasibility, acceptance by users and future improvements.

4.4.1 Study procedure

To evaluate the early feasibility of MyBehavior, a small 3-week, two-group

randomized control trial (RCT) was conducted. The team that supervised the

trial included the builders of the MyBehavior app and authors of this paper.

This team recruited participants through advertisements placed around the Cor-

nell University campus. In the advertisement, we invited participants to test a

new mobile app to help them stay on track for physical activity and food in-

take. Recruitment was restricted to participants who owned an Android mobile

phone and had an interest in fitness. In the app, food was manually logged

without the crowd-sourcing capability.

Prior to the study, the investigators arranged face-to-face meetings with the

participants and acquired their informed consent. Participants also completed

a brief survey to provide demographic data and information about their prior

experience with mobile technologies and weight loss/fitness apps. All partic-

ipants attended a training session, where they installed MyBehavior on their

primary mobile phone and received basic instructions, including how to enter

their gender, height, and weight and how to set up a weekly weight goal (i.e.,
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lose weight, maintain weight, or gain weight). During the first week, users re-

ceived a daily summary of their activities and food intake. This baseline week

was intended to resemble many modern mobile health apps [106][105], where a

calorie count and a lifelog is provided, without suggestions on what behaviors

to change.

After the first week, the experimenters conducted an in-depth, semi-

structured interview with participants about their experience to date and then

randomized participants into control and experimental groups. A random num-

ber generator was used for randomization. Assignment was single blind, as the

study participants did not know their condition, while experimenters had full

knowledge about the assignments.

We provided MyBehaviors personalized context-sensitive suggestions to the

experimental group while the control group received generic prescriptive rec-

ommendations generated from a pool of 42 suggestions for healthy living, such

as walk for 30 minutes and eat fish for dinner. A certified fitness professional

created these generic suggestions after following National Institutes of Health

resources [109][108]. An external nutrition counselor also reviewed the sugges-

tions to ensure that they were both healthy and achievable. The list of these 42

suggestions is added as Appendix 1 in this paper. For the following 2 weeks,

participants continued to log behaviors and receive their respective suggestions

on their mobile phones. During the entire study period, we asked participants

to complete Web-based daily diaries to better understand their experience in fol-

lowing the suggestions. At the conclusion of the 3-week period, all participants

were asked to complete a brief survey about the suggestions provided and were

interviewed again face-to-face about their experience with the app.
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4.4.2 Participants

We recruited 18 participants, 17 of whom completed the study. Of the 17

participants, there were 13 students (76%) and 4 professionals (24%), 8 females

(47%) and 9 males (53%), all between the ages of 18 and 49 (µ = 28.3, σ =

6.96, q25 = 22, q50 = 26.3, q75 = 36). All participants reported low-to-moderate

levels of physical activity. The majority of participants were experienced mo-

bile phone users - 9 participants (53%) had previous experience using a food

diary, and 6 participants (35%) had previously kept an exercise log. After the

randomization, participants in the groups were similar in terms of level of ac-

tive lifestyle and experience with using mobile-based self-management tools.

Our sample size was determined based on earlier literature [80][31][42] that

suggested that small studies (n ≥ 4) are more suitable to test early feasibility

of novel behavior change technologies like MyBehavior.

4.4.3 Outcome Measures

First, we used a suggestion-rating survey to evaluate user intentions to fol-

low the suggestions. Participants completed this survey after the 3-week study

concluded. Participants rated the suggestions, by indicating on a 1 to 5 scale,

whether they would be willing and able to do the recommended action on

an average day - 5 (Strongly Agrees that he/she can follow the suggestion),

1 (Strongly Disagrees). Each participant rated suggestions that she/he saw dur-

ing the study in an online form. Experimental group participants rated 15 top-

ranked - top 8 physical activity and top 7 food - personalized MyBehavior sug-

gestions of their own. On the other hand, the control group participants rated

10 randomly chosen generic prescriptive suggestions. In addition, we quantita-
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tively measured behavior change for all participants using logs of daily physical

activity and dietary intakes.

The daily diary and the in-depth, semistructured interviews measured par-

ticipant feedback regarding the suggestions. For the daily diaries, we queried

(1) whether they looked at MyBehaviors suggestions, and (2) whether they

made or wanted to make any changes after seeing the suggestions. The

semistructured interviews covered users general overall experience with MyBe-

havior and the quality of the suggestions. Specifically, we inquired about aware-

ness, behavior change, and of any software improvement they would like to see.

In addition, in the interview, we asked clarifying questions that explained quan-

titative results observed from the data.

4.4.4 Analysis plan

Regarding the user’s intention of following MyBehaviors suggestions, we

gathered ratings for suggestions on a secure website and analyzed the data us-

ing RStudio. Since the ratings were in ordinal scale, we used a nonparametric

Mann-Whitney U test [115] for statistical significance and effect size.

We measured behavior changes by analyzing activity and dietary logs for

statistical significance using MATLAB (MathWorks, Inc) statistics toolbox and

RStudio. For each user, we computed median walking length and calories per

food item. We considered medians across entire weeks over other central mea-

sures since they are less susceptible to spurious noise or outliers (eg, occasional

intake of very high-calorie food or atypical, unusually lengthy walk). We did

not report changes in running and manually logged exercises in the data anal-

ysis as they often require higher effort and are tough to change within the 3
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weeks of the experiment. In our analysis, we first considered the number of

positive changes. A positive change is defined as a downward trend in me-

dian calories in meals, or an upward trend toward longer-length walks over the

first week to the third week. We used the Fisher Exact Test [115] to measure

the number of positive changes as an effect of MyBehavior. Because of small

sample size, the Fisher Exact Test is used instead of the chi-square test for in-

dependence. We used a two-sample independent Students t test to measure

statistical significance for total walk lengths and total food calories consumed

per day. We computed differences in walking distances instead of total num-

ber of calories burned, since a walk of a fixed distance can result in a different

amount of calories burned for different individuals [12]. We calculated the effect

size of walking and eating behavior changes with Cohens d measure.

Finally, face-to-face, semistructured interviews were audio recorded and

transcribed. Interview transcripts and daily diaries were then broken down into

themes using thematic analysis [28].

4.4.5 Results

Adherence

A total of 17 participants completed the 3-week study, yielding almost 2.1

million recorded physical activity instances, amounting to more than 8000 hours

of physical activity. During the same period, participants labeled nearly 850

images of food with annotations.
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User Acceptance of MyBehavior Suggestions

In the suggestion-rating survey, the experimental group (µ = 3.4, σ =

1.2, q25 = 2.75, q50 = 3, q75 = 4), with MyBehavior suggestions, intended to fol-

low personalized suggestions more than the control group (µ = 2.5, µ = 1.6, q25 =

1, q50 = 2, q75 = 4) intended to follow the generic suggestions. A nonparamet-

ric Mann-Whitney U test [32] found this difference to be statistically significant

(P < .001, 95%CI = [0 − 1.001], effect size = 0.99).

Physical Activity

Figure 4.2 shows the distribution, in the form of box plots, of walking lengths

over time for the experimental (left-hand image) and the control (right-hand

image) groups. For each week of the study, we computed these distributions for

the different users. To ease interpretation, we joined the median per week with

thick green or red lines for each user. A green line implies a positive change as

discussed in the data analysis section. A red line indicates the reverse negative

trend. We used a log scale for walking-length distribution since walking-length

distributions have heavy tails [58].

Figure 4.2: Box plots showing the distribution of walking lengths for the experimen-
tal group (a) and for the control group (b) over the 3-week study. We joined the me-
dians of distributions and showed each trend as a thick green line (increasing trend)
or red line (decreasing trend) for walking length.

For walking, 78% (7/9) of participants in the experimental group (Figure 4.2,
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left-hand image) showed positive trends, whereas 75% (6/8) of participants in

the control group (Figure 4.2, right-hand image) exhibited negative trends. A

Fisher Exact Test found this ratio in the number of positive changes between

the experimental and control groups statistically significant [115] (P = .05). In

addition, MyBehavior users walked an average of 10 minutes more per day

within the experiment phase (i.e., from the first to the third week). However,

we did not observe any change for the control group. A two-sample t test found

this difference in change of walking duration to be significant (t15 = 2.1, P =

.055, 95%CI[−0.23, 19.052], d = 0.9).

Qualitative data from daily diary and face-to-face interviews largely sup-

ported this quantitative result. However we also observed some important sub-

tleties. First, participants in the experimental group described the activity sug-

gestions to be actionable and relevant to their lives. Control group participants

appreciated that the generic suggestions reminded them of good habits. How-

ever, they often faced problems incorporating the suggestions into their daily

lives. The following quotes were taken from the daily diaries of participants.

Those suggestions are quite good, which reminds me not to sit too long in

one place. [Experimental group participant 1]

The exercise suggestions made me want to do some more activities and be

less stationary. Seeing how long I have been stationary and the low fre-

quency of activity made me want to make a change. [Experimental group

participant 5]

Try to get up from my desk more often...added walk” notes to my calendar.

[Experimental group participant 2]

I did some walking where I normally walk. The app now shows I walked
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there 26 times. The app makes me feel that I can do it again since I have

done the same walk many times. [Experimental group participant 7]

The suggestions encourage me to do/plan exercises for the near future...It

reminds me that some foods are better than others. [Control group partici-

pant 1]

They seem like good generic suggestions. The kind you would read...as tips

in a health magazine or some such...[Control group participant 4]

Some MyBehavior users reported that even the non-frequent explore sug-

gestions were actionable and expressed interest in acting on them. For instance,

experimental group participant 7 said the following in his/her daily diary:

I saw a walk to my nearest bus stand listed. Normally, I drive my car to go to

my office. But looking at the extra walking I got while going to the bus stop

makes me think about doing it often and making it a habit. [Experimental

group participant 7]

Results from interviews also revealed that participants at various stages of

active lifestyle reacted to suggestions differently [122]. For the experimental

group, participants who were considering making changes expressed that they

became more self-conscious about their behavior and they were eager to fol-

low the suggested changes (e.g., starting to walk more near home, or contin-

uing runs on treadmills). Comparatively, users likely maintaining an active

lifestyle expressed that the suggestions reflected their current healthy behav-

ior and considered them as good reinforcements. However, participants in the

maintenance phase wanted to change their stationary behavior in the office with

occasional small walks. For the control group, users were frustrated because the

suggestions were not always feasible and did not blend with their routines and
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lifestyle. Control group users maintaining an active lifestyle were unaffected

by generic suggestions and continued their regular behavior across weeks. For

example, control group participants 7 and 8 were maintaining-participants and

their behavior showed no negative trends in Figure 4.2 (right-hand image). Con-

trol group users who did not already have a maintaining lifestyle gradually be-

came less active or made poorer food choices after the initial phase of the study.

Finally, on a few occasions, MyBehavior suggestions were hard to follow or

did not reflect user preferences. For example, one user reported in the interview

that he used to play soccer with his friends but his friends recently moved to

a new location. He could no longer play soccer, which MyBehavior was sug-

gesting. In addition, often user-preferred activities are not top MyBehavior sug-

gestions. For instance, one user preferred to swim even though she did not do

it often. Finally, experimental group participant 8 (subject 8 in Figure 4.2, left-

hand image, with negative trends) reported an inability to follow MyBehavior

suggestions because of a looming work deadline during the study.

Dietary Behavior

Figure 4.3 shows the distribution, in the form of box plots, of meal calories

for the experimental group (left-hand image) and the control group (right-hand

image). For each week of the study, we computed these distributions for differ-

ent users. Similar to walking-behavior graphs, we joined medians across weeks

to show positive or negative changes for each user.

For caloric intake, 78% (7/9) of participants in the experimental group

showed positive trends (green lines in Figure 4.3, left-hand image), and 57%

(4/7) of participants in the control group showed negative trends (red lines
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Figure 4.3: Box plots showing the distribution of food calories for the experimental
group (a) and for the control group (b) over the 3-week study. We joined the medians
of distributions and showed each trend as a thick green line (increasing trend) or red
line (decreasing trend) for median food calorie intake.

in Figure 4.3, right-hand image1 participant had insufficient data). However,

a Fisher Exact Test found this to be nonsignificant (P = .15). For control

group participants, we also found their average median calories per day to in-

crease by 211 calories (µ = 211.7, σ = 263.07, q25 = −31.25, q50 = 187.5, q75 =

429.35) from the first week to the third week. Comparatively, the experimen-

tal group showed an average calorie per day decrease of nearly 100 calories

(µ = −99.3, σ = 481.27, q25 = −527.83, q50 = −37.3, q75 = 87.5) from the first

week to the third week. This change was not significant in a two-sample t test

(t12 = 1.3234, P = .21, 95% CI = [−201, 822.96], d = 0.72).

In qualitative feedback, similar to physical activity suggestions, experimen-

tal group users found the suggestions to be more actionable and reported to

make more changes compared to control group users who found the sugges-

tions to be hard to work on. This feedback is illustrated in the following quotes

from participants daily diaries.

The pictures of my meals are very useful to keep track of what I’ve been

eating in the past. People tend to forget about their habits, but pictures

in this case are a nice way to bring your food history in front of your eyes.

[Experimental group participant 9]
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The suggestions remind me that some foods are better than others. [Control

group participant 1]

It recommends me to eat stuff that I don’t have at home. [Control group

participant 4]

These suggestions don’t take into account my dietary restrictions. [Control

group participant 5]

Similar to activity explore suggestions, MyBehavior users often found the

explore suggestions to be actionable.

I just wanted to see what it was...These ones [explore suggestions] seemed

to pick up some ”good” food habits. [Experimental group participant 4]

Finally, users reported manual food logging to be time-consuming in the

interview. However, they also reported that this manual process made them

more aware of their foods. Consequently, control group participants reported

to make dietary changes without personalized suggestions.

4.5 Success and Lessons Learned for the Pilot Deployment

4.5.1 Principal Findings

To our knowledge, MyBehavior is the first system to automatically provide

personalized suggestions that relate to users lifestyles. In the quantitative re-

sults, MyBehavior users demonstrated superior behavior changes compared to

the control group. Qualitative measures from the face-to-face interviews and

the daily diaries confirmed that the suggestions indeed were perceived to be
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personalized to their lives. This concordance of superiority in both quantita-

tive behavior change and qualitative user perception makes MyBehaviors au-

tomated health feedback approach very promising and provides support for

longitudinal studies and future investigations into automated personalization

approaches.

Specifically, in the evaluation, users rated that they could follow MyBehavior

personalized suggestions more than the control condition suggestions. Results

also revealed a significant change in walking behaviors for MyBehavior users.

In qualitative measures, users reported MyBehavior activity suggestions to be

more actionable. Interestingly, although users qualitatively reported the dietary

suggestions to be more actionable, dietary behavior changes were not found

to be different between the groups. This finding could be due to the manual-

logging nature of food intake being sufficient for behavior change alone. The

manual process of food logging might produce self-awareness and reflection.

Indeed, past research demonstrates that simple logging can improve ones food

consumption behavior [145]. However, food logging is an arduous process and

it is often hard to continue for an extended period.

Nonetheless, the pilot study with MyBehavior explores a unique space for

health feedback. Earlier studies in this domain predominantly focused on over-

all behavior [38][89], tailoring [84], or self-tracking without deeper data analysis

and personalization. MyBehavior takes a data mining approach to automat-

ically find contextualized suggestions from logged data. This automated ap-

proach also relieves users from the burden of self-analyzing their data. Thus,

MyBehavior is a marked departure from previous self-monitoring programs

found in the literature, where users themselves decide on how to make changes
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on their own. MyBehavior suggestions relate to a users existing behaviors, mak-

ing them actionable as the user is told where and when to act on them. Fur-

thermore, unique sets of suggestions are generated for each user based on their

routine and lifestyle. The literature on N-of-1 approaches [48] argue that such

personalization should yield better efficacy than one-size-fits-all or tailored-

suggestion approaches, where similar suggestions are provided to users with

similar characteristics (e.g., age, gender, daily calorie intake, and loss).

4.5.2 Lessons Learned

Despite this promising direction, the automated data-driven personalization

approach of MyBehavior brings its own challenges. Manual logging of food

and exercise, in addition to automated logging, are necessary for proper func-

tioning of MyBehavior. Qualitative interviews revealed that manual food and

exercise logging were often burdensome. Future iterations of MyBehavior could

use crowdsourcing-based semiautomated approaches to decrease the burden of

manual food journaling [111]. Finally, interviews also highlighted the impor-

tance of considering contextual changes in users’ lives and preferences. Thus,

giving users control in deciding which suggestion they want to follow is re-

quired for well-accepted personalization.

4.5.3 Limitations

An important limitation is the short-term and small-scale nature of the study,

which makes it difficult to make definitive conclusions. However, the study

helped us to identify the potential efficacy of MyBehavior and pinpoint design

improvements for future deployments. Indeed, Klasnja et al [80] argued that
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such short-term studies with similar evaluation goals as in our study are of-

ten more suitable for new and untested behavior change technologies like My-

Behavior. Another limitation was that the non-personalized suggestions were

sometimes too specific, for example, “walking with a dog”. In the daily di-

aries, some users reported that they could not follow this suggestion since they

did not own a dog. While designing generic suggestions, we tried to find sug-

gestions that most users could follow, without being overly generic. However,

there will always be exceptions where a suggestion does not fit ones lifestyle.

4.6 System footprint

In this section, we describe the system foot print for running the multi-armed

bandit algorithm. The memory footprint and CPU usage are both low in a test

on Android Galaxy Nexus phone. Memory footprint is 19MB while 2% CPU

is used to run the MAB. The MAB finished running within 1.5 seconds. Note

here that the MAB runs once a day in MyBehavior to refresh the suggestions.

Therefore the impact for running MAB is negligible to the phones battery per-

formance.

The system footprint is low because MAB is an online learning technique.

Unlike batch learning algorithms like Markov Decision Process (MDP), online

learning does not require large amount of computation to learn and adapt. Only

the latest data points need to processed to update the model. Furthermore, MAB

have less parameters compared to other planning techniques like MDP. There-

fore it is easy to learn and adapt MAB models from less amount of data.
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4.7 Discussion and related work

We conclude this chapter with several related works to personalizing rec-

ommendation. We discuss different algorithms alongside the reasons of choos-

ing or not choosing them for MyBehavior. In addition, since MyBehavior can

be framed as both a recommender system and an application of reinforcement

learning, we divide the related works into two parts; one part dedicated to rec-

ommender systems and the other part discussing reinforcement learning.

4.7.1 Related works in recommender systems

Recommender systems is one of the biggest successes of computer science in

the past few decades [77]. These systems utilize a large amount user generated

ratings and behaviors to learn patterns of preference and subsequently recom-

mend contents that fit a user’s likings and needs. It is not possible to mention

all the research that has been done, but the most common techniques in recom-

mender systems are discussed. Subsequently, the positioning of MyBehavior in

the existing work on recommender systems is discussed.

A brief overview to common recommender systems algorithms

Collaborative filtering: Collaborative filtering (CF) is probably the most com-

monly used algorithm in recommender system [77]. CF’s underlying assump-

tion is that similar people have similar tastes/preferences. Technically, CF mod-

els the world as follows:

Users × item→ rating
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where User, item, and rating respectively represent users of the system, the items

to be recommended 1 and the overall quality of the recommendation. CF does a

nearest neighbor search to find users who rated similar items identically. Then

CF recommends items to a user that other similar users rated highly. A poten-

tial advantage of CF is that there is no need to detailed understanding of the

structure/patterns/values of users or items; similar users already have similar

values or tastes which are embedded in their item ratings. Therefore, it is pos-

sible to give effective recommendations by simply matching tastes. There is no

need of a detailed understanding of the reasons, which is often harder task, be-

hind the common tastes and value. Another advantage of CF is the capability

to recommend novel or serendipitous items; e.g., if a user has not seen movies

that similar users highly preferred then CF can recommend those movies that

are novel or serendipitous to the user. Model based techniques, which would

be described later, can not provide such novel or serendipitous recommenda-

tions because they rely on data or movies that the user watched or rated before.

Nonetheless, there are also a few disadvantages to CF. CF needs user rated data

to building models, and users also need to rate a few items to get recommen-

dations. Furthermore, CF is a black box technique since it employs no under-

standing of the structure of users or items. Also, CF assumes some users are

similar, but users can have important differences according to N-of-1 or small

data as discussed in Chapter 1. In addition, some knowledge of items or sugges-

tions are necessary for health apps, since suggestions have to respect behavior

change theories and promote change (Chapter 2). Finally, CF is not an adaptive

algorithm that can learn and change based on user behavior and their response

to suggestions. On the other hand, the purpose of health recommendation is to

promote and model ‘change’.

1items are same the suggestions in MyBehavior
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Context-aware-recommendation: MyBehavior is a recommender system that

falls into the category of context-aware systems. There are existing recom-

mender systems work that apply context awareness [10][128]. These techniques

however deploy a modification of collaborative filtering in the following way:

Users × item × context → rating

where the goal is to find similar users who rated similar items in similar con-

texts identically. For instance, a movie recommender system can recommend

movies that similar users liked that also fits for a weekend (here weekend is

the context). Pertaining to contexts involving users location, a typical context

aware recommender systems is a ”tourist guide” where places-of-interests are

suggested based on the current location [78]. However, collaborative filtering,

with an extra dimension of context, means that even more data is needed than

traditional collaborative filtering, because for each specific variety of context,

we would need more data for each user and item combination. Furthermore,

tourism or visiting a new place is different from making a user active within

their lifestyle: people would prefer to visit most popular places when they are

touring a new place, but people do not normally take tour into other people’s

lives or routines as part of daily activities. In other words, people are all differ-

ent in their lifestyles, and it is necessary to consider the difference when sug-

gesting small changes to a user’s routine.

Content-based-recommendation: Content based recommender (CBR) systems

use a different reasoning compared to collaborative filtering in constructing rec-

ommendations. CBRs find some attributes or characteristics of the items that

users preferred before. Formally, a CBR models the following function:

rank = f (past user behavior, characteristics of items)
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where f is the objective or ranking function that maps past user behavior of

preferring different items and the inherent properties of the items to an or-

der/ranking of user preference. The higher ranked items are more preferred.

An example of CBR can be the following: a webpage recommender system

wants to recommend pages that reflects a user’s preference. The system ana-

lyzes a user’s website browsing history or bookmarks to find similar websites

the user visits, e.g., sports or entertainment news etc. One way to find similar

items is to analyze the contents, e.g., tf-idf or topic model, of a webpage and

find webpages with similar contents [75][27].

There are a few potential advantages to CBRs. The ratings can be constructed

implicitly with domain knowledge, and without an explicit rating given by the

user. “Click through rate” is a simple way to define ranking where a higher

number of click is assumed as a implicit measure of user preference. Similarly

an item might be suggested for purchase because they are available in a local

store and therefore the item is easy to acquire without the shipping delay. A

general problem with CBRs is that they can not introduce novelty or serendipity,

because only users past data is used to make suggestions.2

MyBehavior is a content-based recommender system

MyBehavior is a content-based recommender system, where domain knowl-

edge is used to construct the objective function. We utilized the domain knowl-

edge of self-efficacy and low-effort theory from psychology to form an objective

function from physical activity and food data collected from a user. Collabo-

rative filtering is not used, because prior data from other users are needed to

2A hybrid recommender with CF and content-based mixed can give novel recommenda-
tions [30].
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construct recommendations. Furthermore, collaborative filtering utilizes user

similarity, which N-of-1 literature is in conflict with.

4.7.2 Related works in reinforcement learning

MyBehavior is a content-based recommender system. But, a content based

recommender system can be built in several ways. e.g., a supervised learning

can be used to learn, where a rank function is learnt as a function of past user

behavior and item properties. However, supervised learning requires that some

representative data are available ahead of time and there is no later adaptation

necessary, because the world would not deviate from the representative data.

Both of these assumptions are hard to satisfy for health recommender systems,

because of two reasons (i) user data becomes available incrementally over time.

Therefore, it is hard to learn the best suggestions/action without seldom explo-

ration, (ii) user behavior would change as part of interventions. which means

there is a need for adaptation. A reinforcement learning (RL) algorithm can fit

the problem better, since they can learn from incrementally available data, cre-

ate recommendations, and follow up or adapt based on the user reactions to the

recommendations [149]. We will provide a brief description of the different re-

inforcement learning technique, followed by a discussion on the reinforcement

learning algorithm, i.e., the multi-armed bandit, chosen for MyBehavior.

Associative vs Non-associative reinforcement learning: In RL, an agent takes

an action (or recommends), evaluates the actions by receiving feedback/reward

and updates its policy for future recommendations. One way to decide actions

is make the actions depend on context or environment. For instance, a physical

activity suggestion to walk outside is more appropriate in warm weather com-
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pared to a cold one. RL algorithms that take different actions depending on dif-

ferent contexts are called associative or contextual RL algorithms. Markov deci-

sion process (MDP) and contextual-bandits are associative reinforcement learn-

ing techniques [149]. However for associative RL algorithms, the modeling of

context is a challenge because real world contexts are hard to understand and

quantify [149]. Furthermore, for personalized systems, different people can ex-

perience same context differently, since understanding context can depend on

personal interpretations of the situation and context. e.g., in an office space,

there are lot of people, but most people are doing different things which there-

fore make their interpretation of the context of an office different. A simpler

approach is to ignore the state or context all together and find the most useful

actions. The category of RL algorithms that ignores contexts are called the non-

associative reinforcement leaning algorithms. Multi-armed bandit is one of the

most popular non-associative RL algorithms.

Stochastic (stationary) vs adversarial (non-stationary) reinforcement learn-

ing: Another categorization of RL algorithm deals with its capability to handle

change over time if the user changes their behavior. Stochastic RL’s assume that

the users do not change overtime. On the other hand, adversarial RL considers

that changes can happen in rewards received for the same actions across time.

MyBehavior is adversarial and non-associative

Due to the difficulty of accurately modeling context, which is partly due to

the lack of any available context data apriori per person, MyBehavior’s initial

version uses a non-associative version of RL. i.e., there are no separate poli-

cies for different situations and context. Nonetheless, the results of MyBehav-

ior show that such non-associative systems, in fact, can create effective sug-
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gestions. In future work, associative version of MyBehavior can be considered

where large amount of user data is available and suggestions can be made as

dependent on different user contexts. Finally, we choose adversarial RL, with

the exp3 strategy, to adapt to lifestyle changes.
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CHAPTER 5

HUMAN-IN-THE-LOOP

In the last chapter, an automated way to generate and rank suggestions using

Multi-armed bandit (MAB) was described. However, a general problem of most

automated ranking system is that they often do not capture all the complexities

of human needs and preferences []. Two of such scenarios were already de-

scribed in the last chapter, and for completeness I briefly describe them again

below:

1. People are often highly motivated about certain activities that they do not

regularly do or have done repeatedly in the past. For example, several

users wanted, “going to the gym” as a top suggestion even though they

did not frequently go to gym in the past. As a result, gym is not probably

low-effort or easy-to-do.

2. Contexts and circumstances of a user’s life can change. Therefore an ac-

tionable suggestion in the past may not stay actionable in new life cir-

cumstances. Although MyBehavior can dynamically adapt to lifestyle

changes, on occasion MyBehavior took time to adapt.

MyBehavior addresses these two limitations by providing control to the

users over the suggestions. Users can remove, up-vote or down-vote specific

suggestions. However such user preference can destroy the low-effort optimiza-

tion already done by the Multi-armed bandit from the earlier chapter. Therefore

MyBehavior also balance between low-effort optimizations and users prefer-

ence using a principled algorithm, called Pareto-frontier. The balancing criteria
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is also grounded in psychological theories of behavior change such that the re-

sulting suggestions are highly actionable.

In the rest of the chapter, I describe details of the human controls in MyBe-

havior. First, I argue the necessity of keeping users-in-the-loop with detailed

grounding into existing theories of behavior change. These theories would later

also guide the ways the human inputs can be incorporated into a ranking algo-

rithm.

5.1 Necessity of Human-in-the-loop

Above, we described two cases where incorporating human control can in-

crease experience. Both of the these cases can be made stronger with theories

from behavior change and context aware computing.

We start with the first observation, where people might prefer suggestions

that are not easy-to-do and are not ranked higher by the MAB algorithm dis-

cussed in the last chapter. B.J. Fogg’s behavior model (FBM) argues that an

individual may undertake a hard-to-do action when they are motivated. Ac-

cording to Fogg, any health suggestion needs to ensure that users are suffi-

ciently motivated and/or have high ability to implement the suggestion. Fig-

ure 5.1 shows a near redraw of the diagram of Fogg’s model from Chapter 2.

Note the diagram is conceptual, and the axes do not have any unit. A sugges-

tion above the activation threshold has high enough motivation or ability or both

to be actionable. Typically highly rated MAB suggestions are low-effort and

thus located in the right (e.g., the green stars in the figure). However a not-so-

low-effort suggestion, denoted by the red-star in the left-top of the figure 5.1,

may be actionable since the user is highly motivated to follow the suggestion.
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Figure 5.1: BJ Fogg’s Behavior model

Given such insight of FBM, let us revisit the case where users wanted to go to

gym even though gym is not highly ranked by MyBehavior’s low-effort opti-

mization. Since users think that they can go to gym (i.e., gym is actionable)

even though they did not go to the gym repeatedly before, the users might be

highly motivated to go to gym if we follow FBM. Therefore it is necessary to in-

corporate suggestions that users are motivated towards, since according to FBM

these suggestions are actionable even though they are not low-effort, and rank

them some how high inside Mybehavior.

Regarding the second observation, where users could not follow a few sug-

gestions because their life circumstances changed, MyBehavior was slow to

adapt. The existing version of MyBehavior is tied to locations and past behav-
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ior, and there are other aspects of context or life that are hard to capture with

the sensing technologies available. Dourish [45] in his book “Where the action

is” and Lucy Suchman [148] in her work on “situated action” argue that it is

hard completely understand context by automatic means. They argue that the

meaning of context often depends on subjective observation, feelings and inter-

pretation of the situation. These meanings can be partially dictated by culture,

life circumstances etc. Such complexity to meaning is often hard to know ob-

jectively from sensors. For instance, when a user’s buddies left and he could

not play soccer anymore then it is a context switch that is hard for MyBehavior

to capture automatically. However, the user is aware of that the context switch

happened. Hence a simple control to remove the suggestions would suffice to

correct context changes that MyBehavior failed to understand.

5.2 Incorporating Human-in-the-loop

MyBehavior provides 3 different user interactions to incorporate user pref-

erences. In the following, I first describe the interactions. Subsequently, I dis-

cuss how the user preferences are balanced with Multi-armed bandit generated

rankings to create a final ranking of most actionable suggestions.

5.2.1 Interactions for human control

MyBehavior provides three different user controls/interactions to incorpo-

rate user preference. First interaction allows a user to remove the suggestions

that the user does not want or is unable to follow due to a change in life circum-

stances. In terms of interaction, users can swipe from left to right and remove

suggestions (Figure 5.2(a)); a removed suggestion is never considered in the
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(a) (b) (c)
Figure 5.2: Keeping human in the loop (a) dismissing a suggestion by removal (b)
Moving a suggestion above (c) Moving a suggestions below

future. In addition, MyBehavior allows the users to re-sort the suggestions in

order of their preference. Users can long-press a suggestion and move the sug-

gestion above or below another suggestion (Figure 5.2(b-c)). For instance, if a

user prefers to go to the gym even though s/he did not do it often before, the

user can simply move the gym suggestion to the top.

5.2.2 Handling user changes using Pareto-frontier

Finding balance between user changes and low-effort

User customization creates a new ranking that reflects a user’s preference.

This ranking is an additional ranking to the ranking generated by the Multi-

armed Bandit from chapter 4. Any change from the low-effort ranking intro-

duced in the earlier chapter means that some suggestions are more preferred

by or motivating to the user which are not lower-effort. FBM suggests that
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both low-effort and motivation are important for actionability, and it already

describes how to balance between low-effort and motivation. Hence we can

operationalize FBM to balance between low-effort, as suggested by MAB, and

a user’s motivation, as suggested by user preference ranking, and find a final

ranking of actionable suggestions.

The final ranking or order of actionable suggestions are determined using

FBM as follows [52]. In FBM, both motivation and low-effort (i.e. perceived

effort level) are important factors in how actionable a suggestion would be. We

illustrate what Fogg’s behavior model would suggest with an example. Let

us assume that there are three suggestions for a user: walking near the office,

walking near the home, and going to gym. The user frequently walks near the

office and prefers doing this. User also has a high preference for going to the

gym, but is not good at gym work and goes infrequently. In addition, the user

frequently walks near her house but is not keen on this activity. In this scenario,

Fogg’s behavior model would suggest that walking near the office is the most

actionable. However, choosing between walking near home and going to gym

would be a tie since one is easier to do while the other is more preferred.

An algorithm to operationalize FBM

Given the insight on how FBM can balance between low-effort and motiva-

tion, in this section we describe how the balancing can be done using an algo-

rithm called Pareto-frontier. We first define the pareto-frontier algorithm [131].

Then we describe how Pareto-frontier operationalize FBM’s balancing act as

part of its algorithmic steps.

Pareto-frontier (PF) algorithm is a strategy for making decisions when there
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(a) (b) (c)
Figure 5.3: An example for pareto-frontier operation (a) before user preference (b)
after adding user preference (c) pareto-frontier ranking

are multiple objectives. Specifically, let for input domain x ∈ X, we have ob-

jective functions f1(x), f2(x), ..., fn(x) that we have to maximize simultaneously.

Now according to PF algorithm, x1 ∈ X optimizes these objective functions more

than x2 ∈ X (also referred as x1 pareto-dominates x2) if

1. fi(x1) ≥ fi(x2) for all i = 1, ...n

2. f j(x1) > f j(x2) for at least one j = 1, ...n

With the definition of pareto-froniter, let us visit an example in Figure 5.3 to

show how pareto-frontier would work to operationalize FBM. Figure 5.3 shows

the low-effort ranking of 6 suggestions, where the number in green circle 1 to

6 respectively denote the first to sixth ranked suggestions by the MAB. After

the user interaction, let us assume a user swapped the order of 2 and 3: i.e.,

3 is the second ranked suggestion in user preference ranking, while 2 is the

3rd user preferred rank. The user preserved the ranking of other suggestion.

Now, if we consider user preference ranking as motivation then we will get

the suggestion positioning in the combined low-effort and motivation space as

shown in Figure 5.3b. This low-effort and motivation space is the same space as

shown for FBM in Figure 5.1. Here, 1 is the highest ranked or most actionable
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since its low-effort and motivation level are higher than all. 2 and 3 are a tie

since 2 is lower-effort while 3 is more motivating. 4 would be ranked next and

higher than 5, since 4’s low-effort and motivation levels are higher. Same holds

for 5, which would be ranked higher than 6.

Let us if we run the pareto frontier algorithm (PF) on Figure 5.3b, we would

get the same result as shown in Figure 5.3c. The dark brown colored lines are

the classic representation of “frontiers” from pareto frontier literature. A fron-

tier represents a set of suggestions that pareto-dominate the frontiers below.

Suggestions on a pareto-frontier can not pareto-dominate each other. As can be

seen from the Figure 5.3c, 2 and 3 are ranked the same in PF which is instructed

by FBM. Other ranking by PF also holds similarly instructed by FBM. Therefore,

running only the PF on the user-ranking and MAB ranking enacts the theoretical

principles of FBM. In other words, MyBehavior can handle the human-in-the-

loop in a theoretically grounded way using FBM, and MyBehavior can do the

grounding by using a PF algorithm.

The algorithm

More formally PF is used to handle human-in-the-loop in the following way.

First we introduce some notations. We denote the set of suggestions as X where

an element x j ∈ X is a suggestion. For a suggestion x j, ν j refers to its rank from

MAB algorithm whereas p j refers to its rank after users finishes reordering the

suggestions (Figure 5.2(a-c)). Thus a higher rank or value of ν j or p j means the

suggestion is more low effort or more preferred respectively. With this notation,

the pareto algorithm works as follows. Let us assume that for two suggestions

xi, x j, preferences and low-effort ranks are pi, p j and νi, ν j respectively. If xi’s

both preference and low-effort ranks are higher than x j then xi ranks higher (or
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is more actionable) than x j, and xi pareto-dominates x j. If xi’s preference is higher

than x j while the low-effort rank is lower than x j (i.e., pi > p j and νi < ν j) or the

other way around (i.e., pi < p j and νi > ν j) then xi and x j receive the same rank

and the more actionable suggestions can not be decided. Note here, that pareto-

frontier makes no assumption about scale of p or ν and can still balance between

them. Finally, the ranking process works iteratively as shown in Algorithm 1.

It starts with a set of all available suggestions X. At every iteration, a set of

suggestions Xi are selected that pareto-dominates rest of the suggestions. Xi are

then ranked higher than the rest and are removed from the set of X. The process

then repeats.

input : A set of suggestions X annotated with user preference and
caloric benefit used in MAB

Initialize an index value i = 1;

while X is non-empty do
- find subset Xi in X that pareto dominates X − Xi;
- rank suggestion(s) in Xi with i;
- increment i by one and remove Xi from X;

end
Algorithm 1: Ranking suggestion with pareto-frontier

Finally a specific case that needs special attention in the pareto ranking is

when a new suggestion x arrives with low-effort rank ν and unknown preference

p since the user never ranked it. In this case, a fair policy is adopted that acts as

follows: If x1 and x2 are two other suggestions such that ν1 > ν > ν2 and p1 > p2

then no matter what the unknown value of x’s preference is, x would not be

pareto dominated by x2 since x has a higher low-effort rank than x2. Since the

value of p is unknown, it is fairly assumed that this unknown value to be less

than a known value p2. This would assign x the same rank as x2 which is lower

than x1.
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5.2.3 Effect of incorporating human input

We conducted a 3-week pilot to study with a new and improved version

of MyBehavior that incorporated human input. To measure the benefit of in-

corporating human preference, we showed MyBehavior MAB generated sug-

gestions to the users after the study. They were asked to rate 8 food and 8

activity suggestions between a scale of 1 to 5. This rating represents whether

users liked the suggestion and would act on it on an average day (1 = disagree

and 5 = agree). After users finished rating the default set of suggestions, they

were instructed on the use of the remove and reorder functions to incorporate

their preferences. Users on the average changed 3.5 suggestions out of 16 sug-

gestions. When users finished providing their preferences, we ran the pareto-

frontier algorithm and then showed users the revised suggestions. We asked

the users to rate again. Ratings without incorporating the human preference

are similar to results from the MyBehavior deployment from the earlier chap-

ter (µ = 3.5, σ = 1.2). However, after incorporating human preference using

pareto-frontier algorithm, there is a statistically significant increase of almost

19% (µ = 4.2, σ = 1.1).

5.3 Related work in Human-in-the-loop and multiple-objective

optimization

In this chapter, three intuitive user interactions are used to incorporate hu-

man input/preference, and we subsequently merged the human input with the

multi-armed bandit ranking described in the earlier chapter. We have posed the

merging as a multiple-objective optimization problem and have used a well-
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known decision-making algorithm called pareto-frontier to find an overall rank-

ing that is also grounded in psychology theory on persuasion. A few related

works that are relevant to incorporating human control and optimizing multi-

ple objectives are reviewed.

The decision theory and recommender systems literature on multiple objec-

tives can be divided into 4 categories [8][70][117]. They are described below

along with the reasons why they are/aren’t used in MyBehavior:

1. Multiple-attribute utility theory (MAUT) or value focused-methods :

MAUT methods assume that there is a global or overall utility that can

be synthesized as a function of the different objectives (i.e., user prefer-

ence or MAB ranking). Commonly, the global utility is modeled as a linear

combination of the objectives [8][85]. For our problem, where we want to

measure actionability, MAUT would construct a global actionability value,

u, which is a linear combination of user preference, p, and MAB rank ν; i.e.,

u = ap + bν, where a and b are some fixed constants. We avoided MAUT

for a few reasons. First, estimating the values of a or b either requires data

about overall ranking u, where the value of a and b are learnt, or some do-

main knowledge about relation between u, a, b, where an expert provides

the value of a and b. Collecting the overall rankings require extra data

from the user. On the other hand, it is difficult to determine the values

of a and b even with domain knowledge, because user preference level p

for the same suggestion can change over time. e.g., some suggestions are

more preferred in winter or some suggestions are not actionable during

less stressed episodes. Therefore, the value of a, i.e., the importance of

user preference or motivation in “u = ap+ bν”, can change, which makes a
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hard to determine. Furthermore, the value of a and b can vary for different

people. All of these reasons combined, we decided to not use MAUT in

MyBehavior.

2. Multiple objective optimization methods: In this category of techniques,

there is no assumption of a global ranking which is a function of the dif-

ferent objective functions. These techniques, often referred as multiple-

objective mathematical programming [164], use pareto-optimality to find

the final global ranking. In MyBehavior, we use a pareto-frontier method

which is a multiple objective optimization method.

3. Outranking relations models: Outranking relations models are flexible

models that allow for “incomparability” in addition “equally preferred”

and “strictly preferred”. MAUT and pareto-froniter, on the other hand,

do not allow for incomparability. However, the flexibility makes the out-

ranking algorithms more complicated [133], since it introduces a measure

of the extent of incomparability. In addition, the user-interactions for in-

comparability need more effort from the programmer/researcher to code,

and also requires more input from the end-user. As a result, we opted for

the up-down-remove user interactions, which always rank some sugges-

tions more or less preferred than the other, without introducing a notion

of incomparability.

4. Preference learning models: Preference learning methods learn prefer-

ence as a machine learning model. The data from past decisions, of-

ten from same or other users, are utilized to learn patterns of prefer-

ences over multiple objectives, which are later used to infer future prefer-

ences [9][7][134][140]. There are both collaborative filtering methods and
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content based methods to learning preference with multiple objectives or

ranking [9]. Collaborative filtering techniques assume similarity between

users and are often black boxes which are hard to interpret [9]. On the

other hand, content based methods require data before the model is de-

ployed [7][134][140]. In MyBehavior, such data are not available ahead

of time. Therefore we predefine a strategy with pareto-frontier for final

ranking that does not require data ahead of time.
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CHAPTER 6

EVALUATION OF MYBEHAVIOR

In earlier chapters, we described several iterations of design and development

of MyBehavior. These iterations increased MyBehavior’s user experience and

ensured that machine generated suggestions are effectively communicated to

its users. After the improvements, we deployed MyBehavior to show its ef-

ficacy quantitatively. In that vein, we conducted a 14-week deployment and

evaluation study. The purpose of the evaluation is two fold: (1) to test whether

MyBehavior has better efficacy in promoting better exercise and dietary behav-

ior compared to a control condition, and (2) to assess if MyBehavior can en-

able positive change beyond the initial novelty period. However, quantitively

demonstrating behavior change with traditional randomized experiments is of-

ten infeasible for early behavior change application like MyBehavior. This is

because a large number of people need to be randomized in groups and use the

app for a long time [80]. Therefore we used an alternative experiment design

that is appropriate to quantitively demonstrate early efficacy of MyBehavior. In

the rest of this section, we detail the study design, statistical analysis methods

and report results.

6.1 Study design considerations

Randomized Controlled Trials (RCTs) are the standard way to demonstrate

the efficacy of interventions. In RCTs, between-subject designs are followed

comparing control and experimental groups. However, for meaningful compar-

isons between the groups, potential confounds need to be minimized, for exam-

ple in our case Body Mass Index or proficiency with technology. RCTs typically
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achieve this by using large numbers of participants in each group. Moreover,

RCTs also can span many years to show long term change [80].

RCTs would be ideal, such large-scale studies are hard to achieve for novel

systems, partly due to insufficient resources [138]. Furthermore, there is a need

to validate the adoption and potential for change before investing the time and

resources required for an RCT. As a remedy, alternative methods of evaluation

have been proposed in HCI [80] and mobile health [42][114] literature. For in-

stance, Klasanja et al. [80] argue to evaluate new behavior change technology

with small-scale pilot studies. These pilot studies can show early effects and

give guidelines for future improvements. As we have described, several pilot

studies have been done to make design improvements to MyBehavior. Dallery

et al. [42] and Onghena et al. [114] argued that small scale within subject trial,

sometimes referred as “single case experiment design”, are sufficient to evalu-

ate early behavior change technology. Since subjects are compared with them-

selves, there is no issue of the aforementioned confounds caused by differences

among people. Further, sufficient statistical power can be achieve of a large

number of repeated samples are available for a single individual. Repeated

samples can be collected easily with automated sensing or daily manual log-

ging [42].

In our study, we follow a single case experiment paradigm called multi-

ple baseline design [42]. In a multiple baseline design, subjects are initially ex-

posed to the control condition, which is followed by the experiment condition.

However, the duration of the control condition before the experiment condition

varies for different users. Such a variation is made as a replication strategy to

show that the desired dependent variable consistently changes in the desired
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direction after the experiment condition starts. Multiple baseline also suits well

to problems where there are learning effects where it is hard to remove In our

study, participants are exposed to either 2, 3 or 4 weeks of control condition

before using MyBehavior as part of multiple baseline design. We also run the

experiment condition for longer (7-9 weeks) than control condition. We do so to

investigate MyBehavior’s influence beyond initial novelty periods.

6.2 Study procedure and participants

We sent an invitation for participating in MyBehavior’s user study through

Cornell University’s Wellness Center’s email list. Interested individuals

emailed back an investigator and were requested to fill out a prescreening sur-

vey. The survey asked for age, gender, experience in using smartphones etc.

We also asked readiness to act on healthier behavior as defined by the Trans-

theoretical model (TTM) [122]1. We only included participants with (i) sound

proficiency in using smartphones (ii) are either in ready or acting stages of TTM

since in these stages people are willing or acting towards changing their behav-

iors [127]. The study investigators met with eligible participants and installed

MyBehavior on their phones. In these meetings, we provided basic instructions

to use MyBehavior. Participants also entered their gender, weight, height and

weekly weight loss goals. Then the Harris-Benedict equation [66] is used to

translate weight loss goals to daily calorie intake and expenditure goals.

The day after the face-to-face meeting, participants started the baseline phase

1TTM defines several stages to readiness: “Precontemplation” represents a stage of not feel-
ing the need to change while in “Ready” stage there is intention to start eating well or doing
exercise in near future but not taking actions. “Acting” stage on the other hand represents al-
ready taking actions but still need to strengthen commitment, or fight urges to slip. Finally,
“Maintaining” stage means a lifestyle with regular health eating and exercise.
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Variable n(%)

Gender
Male 7(43.7)
Female 9(56.3)

Age
18 - 29 4(25.0)
30 - 39 6(37.5)
40 - 49 3(18.7)
> 50 3(18.7)

Stage of behavior change before the study
Ready 7(43.7)
Acting 9(56.3)

Previous experience with self-tracking
Maintained food diary 13(81.3)
Maintained exercise diary 11(68.7)

Table 6.1: User demographics in the long term study

of the study. In this phase, calorie goals were displayed in an on-screen widget

in the phone’s home screen. This widget also incorporated realtime updates of

user’s daily calorie intake and expenditure. We also added a daily chronological

summary of physical activities and food intake. No suggestions were provided

in this baseline phase. Note here that such widgets and daily logs are common

for many modern health and fitness applications [51][106]. We ran the baseline

phase for 3 weeks, since starting to use a health application often makes users

more active temporarily even though no intervention is used. Such an effect

is often referred to as “novelty effect” [132]. After the baseline phase, partici-

pants were exposed to the control condition of the study. Participants received

generic prescriptive recommendations generated from a pool of 42 suggestions

for healthy living, such as “walk for 30 minutes” and “eat fish for dinner”. A
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certified fitness professional created these generic suggestions after following

National Institute of Health resources [109][108]. An external nutrition coun-

selor also reviewed the suggestions to ensure that they were both healthy and

achievable. We followed the multiple baseline design as described before and

continue the control condition for different durations for different participants.

The control condition ranged between 2-4 weeks depending on participants.

Each day of the control phase, 8 physical activity and 8 food suggestions were

randomly selected from the 42 prescriptive suggestions. These suggestions are

shown in a list similar to MyBehavior suggestions and a few screenshots of sug-

gestions during control phase are shown in Figure 6.1. The entire list of 42 sug-

gestions are added as supporting material of this paper. After the control phase,

participants received MyBehavior suggestions for 7-9 weeks. Total participation

period did not exceed 14 weeks for any participant. Participants were compen-

sated $120 for their regular participation in the study.

We recruited 16 participants. Table 6.1 shows the participant demographics.

Our sample size was determined by following the literature of single case ex-

periment design [42]. The literature argues that n ≥ 4 is sufficient for statistical

power if enough repeated samples are collected per participant.

6.3 Outcome measures of the study

We utilize the food and exercise log data to measure changes in food calorie

intake and calorie loss in exercise. During the study, we also used an in-phone

survey that users filled out daily. The survey asks 5 questions as listed in Ta-

ble 6.2. For the number of suggestions followed, we use self-report since it is

hard to objectively judge whether an activity is done as part of regular actions
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(a) (b) (c)
Figure 6.1: Screenshots of suggestions from the control phase. These suggestions are
randomly selected everyday from the pool of 42 suggestions described below. (a) A
list of physical activity suggestions on a specific day (b) A list of food suggestions on
a specific day (c) A list of physical activity suggestions on another day.

or as a result of the suggestion. We ask how many suggestions users wanted

to follow to measure user intentions or attitude [13]. Past literature shows that

attitudes or intentions often indicate 19%-39% of future behavior [19]. A higher

score in the 3rd question means the suggestions relate to a user’s life and are

potentially easy to implement. We ask the 4th and 5th questions because we

want to investigate how MyBehavior suggestions perform against negative life

circumstances as barriers and negative emotions have been shown to reduce

chances of change [68].

Although weight loss is MyBehavior’s main long term goal, calorie loss or

user intentions to follow suggestions are important mediators to achieve weight

loss. Recent work on adaptive interventions in clinical psychology (e.g., Behav-

ior Intervention Technology [101]) and just-in-time adaptive interventions [107]
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Daily phone survey

1. How many suggestions were you able to follow today?

2. How many suggestions did you want to follow?

3. How well did the suggestions relate to your life.

• likert scale 1-7

• 1- doesn’t relate to your life

• 7- relates to your life perfectly

4. Did you encounter any barrier to follow the suggestions

today (e.g., weather or deadline)?

• Yes/No

5. Rate your emotional state today

• photographic affect meter (PAM) scale [121]

Table 6.2: Users answered the above 5 questions in a daily phone survey

argue that calorie loss or positive activities are essential subaims and are valid

outcome measures for weight reduction applications.

6.4 Analysis plan

We analyze the efficacy of MyBehevior against control condition by model-

ing our outcome measures (e.g., caloric loss or number of suggestions followed)

as continuous variables using mixed effect models against time. We use mixed

effect models [115] since they can handle imbalanced control vs. experiment

conditions [36][120] and correlated data points from the same user [44].

yit = β0 + β1t + β2t2 + β3t3 + βintxit + b0 + btt + εit (6.1)
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In the models, we use the equation 6.1 for mixed effect analysis. yit denotes

the outcome variable for subject i at time instance t.We use intercept and time as

random effects as b0 and bt respectively to allow for inter-subject variations in

initial starting points and growths over time [31][103]. Including these random

effects significantly increased likelihood over fixed-effect-only models in likeli-

hood ratio tests [146]. Such an increase in model fit (i.e., likelihood) means inter-

subject variability exists in our dataset and including random effect is necessary

to properly isolate inter-subject variability from actual trends in fixed effects. As

fixed effects, we use time and intervention type (i.e., control vs experiment). The

co-fixed-effect efficient for intervention is denoted as βint and intervention types

are coded 0 for control and 1 for experiment phase. For time, we count time in

weeks and denote it as t. The first week of the control phase is coded as 0 and in-

cremented by 1 after each subsequent week. We observed non-linear changes in

outcome measures over time, so we use non-linear time effect up to cubic poly-

nomials [146]. β1, β2, β3 are used for the fixed effect co-efficient of t, t2, t3 respec-

tively. In general, considering such polynomial time effects shows significant

improvements in likelihood ratio tests compared to models without such poly-

nomial time effects. On exception is for number of minutes walked where time

or its polynomial forms as fixed effects did not improve the likelihood signifi-

cantly. This approach of centering [146] time and intervention adjusts for time

related effects (e.g., weather effect, or changes due to logging for longer periods)

and isolates the change with MyBehavior over control as the co-efficient of in-

tervention fixed effect (βint). In other words, βints reflect changes (e.g., number of

minutes walked more) at the points of introducing MyBehavior. Finally, for the

survey response of number of suggestions followed, we additionally include

emotional state, barrier and their interaction with intervention types as fixed
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effects. We add these extra terms to explore interplay between MyBehavior and

emotional states/barriers. Emotional states are coded as 0,1,2,3 respectively for

negative high, negative low, positive low and positive high. Barriers are coded

as 1 for presence of barrier and 0 for absence. Both barriers and emotional states

are considered as categorical in the mixed model. The analyses are run using

Matlab’s statistical analysis toolbox with maximum likelihood.

Given significant intervention effects are achieved with mixed effect mod-

els, we explore the real-world end effect of MyBehavior in post-hoc analysis.

We compare 2-4 weeks of using control condition to last 3 weeks of using My-

Behavior. We consider the last 3 weeks of MyBehavior to measure change be-

yond initial novelty periods. Specifically, we describe the mean and standard

deviations for these two conditions. We then use student t-tests and Cohen-d to

measure the statistical significance and effect size. Similar pre-post analysis to

measure real world end effect has been done in [31].

6.5 Results

6.5.1 Comparison with the control condition

Table 6.3 shows the results from the mixed model analyses for different out-

come measures. Due to space limitations, we only include the relevant statistics.

In 2nd column, we report the coefficient of intervention fixed effect (βi) and its

significance. In third column, we also report the standard model fit statistics

that underpin the values of βis. We include standard model fit statistics namely

deviance, AIC and BIC scores [146]. We add significance of the fitted mod-

els (LR) against unconditional mean models (i.e., a baseline mixed model with
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only intercept as both fixed and random effects) [146] using a likelihood ratio

test. From table 6.3, we observe that all the fitted mixed models for different

outcome measures are significant improvements over the unconditional mean

model. Furthermore, use of MyBehavior compared to control condition results

in increased number of suggestions followed (βint = 1.2, p < 0.0005), walking

minutes (βint = 10.1, p < 0.005) and calories burnt in non-walking exercises

(βint = 42.1, p < 0.05) per day. Calorie consumption also decreased per meal

(βint = −56.1, p < 0.05).

Figure 6.2 shows different outcome measures (i.e., number of suggestions

followed, minutes walked, calories burnt in exercise, calorie intake in meals)

over time as commonly reported in multiple baseline designs [42][24]. All these

values are predicted from the mixed models. For each outcome measure, we

create three groups representing 2, 3, 4 weeks of using control conditions before

exposing to MyBehavior. A dotted line shows the start time of using MyBehav-

ior. Improvements in all outcome measures can be seen to occur in Figure 5 after

the introduction of the MyBehavior phase irrespective of the start times. How-

ever, patterns over time differ for different outcome measures. Minutes walked

did not change much over time. On the other hand, food calories consumption

generally decreased over time although introduction of MyBehavior had some

effect. Non-walking exercises generally decreased in control over time, but were

sustained during MyBehavior usage.

Subjective responses namely number of suggestions participants wanted to

follow (βint = 2.9, p < 0.0005) and relatedness of suggestions to life (βint = 0.5, p <

0.0005) were also higher for MyBehavior compared to control (Table 6.3). In-

cluding emotional state, barriers and their interactions with interventions sig-
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(a) Number of suggestions followed over weeks of the study.

(b) Calories lost in non-walking exercises per day across the study

(c) Minutes walked per day during the study

(d) Calories consumed in per meal

Figure 6.2: Changes in user behavior as predicted by the mixed model for multiple
baseline design. The dotted lines represent the start of the intervention of MyBe-
havior. Left, middle, and right figures respectively show results from participants
where intervention were started after 2, 3 and 4 weeks of using the control. Red color
represents control phase where as green represents periods of using MyBehavior.

nificantly improved likelihood of predicting number of suggestions followed

compared to excluding them in likelihood ratio tests (p = 0.05). This means that

there are significant interactions of MyBehavior vs. control with emotional state

and barriers. Figure 6.3 visualizes these interactions as distributions of number

of suggestions followed for different emotional states and barrier conditions.
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Outcome measure βint −2logL AIC BIC LR

# of sug. followed 1.2∗∗∗ 2491 2517 2576 ∗∗∗

# of sug. wanted 2.9∗∗∗ 2496 2518 2568 ∗∗∗

relatedness 0.5∗∗∗ 1551 1573 1623 ∗∗

walking/day (min)‡ 10.1∗∗ 4795 4809 4839 ∗∗∗

exercise/day (cal)a 42.1∗ 10959 10973 11006 ∗∗

each meal (cal) −56.1∗ 16151 16165 16200 ∗∗∗

∗∗∗p < 0.0005; ∗∗p < 0.005; ∗p < 0.05; ∼ p > 0.1
a non-walking exercises combined
‡ without time as fixed-effect

Table 6.3: Summary of statistical differences between control and MyBehavior as
collected from survey, physical activity and dietary logs

6.5.2 Pre-post real-world effect analysis

Pre-post analysis is summarized in Table 6.4. For all the outcome measures,

values of Cohen-d indicate medium to large effects of MyBehavior. Although

not shown in the table, all these changes are also statistically significant (p <

0.05) in student t-tests. An additional result we point to is the changes in num-

ber of suggestions followed for barriers and emotional states. Users followed

more MyBehavior suggestions where there was no barrier (p < 0.001, d = 0.84)

such as bad weather. Similar significant increase is also found for positive emo-

tion (p < 0.001, d = 0.82).

Furthermore, MyBehavior suggestions were still followed more than control

suggestions even when there were barriers (p < 0.001, d = 0.44) or when the

user experienced negative emotion (p < 0.001, d = 0.55). However, effect sizes

are smaller for barrier and negative emotions.
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Figure 6.3: Number of suggestions followed for control and experiment conditions
with respect to barriers and emotional states

6.6 Discussion of results

In a 14-week study, participants subjectively reported MyBehavior sugges-

tions to be more related to their life and they wanted to follow the suggestions

in higher numbers. We believe such higher actionability and relatedness result

from MyBehavior’s prioritization of low effort suggestions. The higher action-

ability and relatedness also translated to actual behavior with increased walk-

ing, exercise and decreased food calorie intake. These favorable results are repli-

cated as part of multiple baseline design as shown in Figure 6.2. This adoption

may result from low-effort suggestions that should enable actual adoption ac-

cording several behavior change theories [52][76][17][68][13]. Finally, in the pre-

post real-world effect analysis, MyBehavior suggestions were followed more

during no-barrier or positive emotions states compared to barriers or negative
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Outcome measure Control MyBehavior Cohen-d

# of sug. followed 1.1 (1.1) 3.1 (2.7) 0.76

# of sug. wanted 2.1 (1.2) 4.4 (2.4) 1.07

relatedness 3.8 (1.1) 4.5 (1.2) 0.54

walking/day (min) 14.5 (5.9) 24.9 (7.4) 1.41

exercise/day (cal)a 83.5 (33.1) 126.7 (35.3) 1.23

each meal (cal) 540 (137.2) 362 (134.1) 1.30

# of sug. followedb 1.3 (2.2) 3.4 (2.8) 0.84

# of sug. followedc 0.6 (2.1) 1.6 (2.5) 0.44

# of sug. followedd 1.2 (1.9) 3.2 (2.6) 0.82

# of sug. followede 0.7 (1.5) 1.9 (2.1) 0.55
anon-walking exercises combined
b for no barrier, c with barrier
d for positive emotion, e for negative emotion

Table 6.4: Pre-post analysis for the control condition and last 3 weeks of experiment
condition. Means and standard deviations (within bracket) are shown along with
effect size measures.

emotional states. We believe this happens because low effort suggestions simi-

lar to MyBehavior are adopted in higher numbers during high motivation states

like no-barrier or positive emotions [52]. Nonetheless, some MyBehavior sug-

gestions were followed during barrier or negative emotional states. According

to Fogg [52], low-effort suggestions similar to MyBehavior may still stay action-

able in low motivation states like with barriers and negative emotions.
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CHAPTER 7

DISCUSSION AND CONCLUSION

The last chapter is concluded with a reflection on the MyBehavior work so far. A

few guidelines are also discussed for future MyBehavior-alike systems1. Specif-

ically, I will divide the description into the following two parts.

1. I will examine what MyBehavior research implies for the existing research

on health interventions. I will argue that there is a historical trend to-

wards tailoring interventions, and MyBehavior follows this trend with

an entirely new way to tailor suggestions at a personal and contextual

level. Following that I will argue why such personalization is important,

and why researchers need to investigate MyBehavior-alike technologies

for other health domains.

2. In the second part, I will describe a few common patterns in MyBehavior-

alike technologies, and how ideas of MyBehavior can be extended for

other health domains.

7.1 MyBehavior, a new way to tailor suggestions

In behavioral intervention design, there is a growing trend to tailor interven-

tions. Considering the fact that patients have differences and their needs change

over time, interventions with personalization or adaption functionality can ar-

guably achieve superior results. In the following, I will discuss a few categories

of tailoring from past literature, and describe where MyBehavior falls in these

1For the rest of this chapter, “MyBehavior-alike systems” would be synonymous to mobile
data driven health recommender systems.
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categories. Furthermore, I will discuss why the different categories of tailoring

may increase intervention efficacy, and where they can have shortcomings. At

the end, I will argue that MyBehavior starts a new way of tailoring suggestions,

which follows the trend of increasing tailoring. Also, I will argue that there are

other domains where similar MyBehavior-alike personalization can be applied.

In the next section, I will follow-up this section’s discussion and describe the

roadmap of how MyBehavior alike personalized suggestions can be created for

other domains.

(a) (b) (c)
Figure 7.1: Three examples of single component interventions. (a) and (b) respec-
tively shows ubifit [38] and bewell [89], both of which uses priming. (c) shows a
schizophrenia intervention app, called FOCUS, that uses cognitive behavioral ther-
apy [20]

7.1.1 Single component interventions

The first category of interventions only include one fixed component (Fig-

ure 7.1). For instance, Ubifit [38] and BeWell [87] used priming to influence a
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user’s physical, activity and social interactions2. Many modern mHealth apps

deploy other forms of single component interventions, e.g., gamification [99],

social support [18] etc. Another common technique for intervention is the ma-

nipulation of motivations with positive and negative reinforcements (e.g., op-

erant conditioning [62]). Cognitive behavioral therapy is a common method to

break beliefs and barriers for mental illness [61][144][20].

These single-component interventions have two major limitations (i) One

single type of intervention almost never works for 100% of the population.

Therefore, there is always a fraction of the population that is not reacting pos-

itively to the intervention [37] (ii) Changing towards a healthier lifestyle is a

dynamic process, and people move through different stages as they begin-to-

change, maintain-the-change or relapse-from-the-change [159]. The require-

ments for different stages are unique. With these two reasons combined, single

component interventions can be less effective compared to methods that tailor

and adapt.

7.1.2 Multiple-fixed-phase multi-component interventions

Acknowledging the need for adaptation, one way to adapt the treatment

can be to break down the process of treatment or behavior change into sev-

eral phases, and subsequently tailor treatment according to the stages. We re-

fer to such techniques as multiple-fixed-phase interventions. Transtheoritical

model (TTM) [72] is a popular and well-used multi-phase intervention (Fig-

ure 7.2). TTM breaks down the behavior change process into 4 fixed stages: pre-

2A component is the type of intervention used. e.g., for depression, one component can be
different types of antidepressant drugs. Another component can be dosage level of the antide-
pressant. Components are also often referred as factors in factorial experiment design [115].
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contemplation stage, where a patient is not intending to make any change; con-

templation stage, where a patient is intending to change, but is not making any

changes; action stage, where a patient is taking actions but needs to strengthen

commitment; maintenance stage, where a patient has formed habits and regu-

larly maintaining the changes. TTM based interventions showed greater effi-

cacy across different domains of health; e.g., smoking cessation, weight loss

etc.; over the non-tailored counterparts.

Figure 7.2: Stages of change in trans-theoritical model [159]

In subsequent research, TTM is combined with other components for specific

domain, e.g., for smoking cessation, a negatively framed message (e..g, Con-

tinuing to smoke will increase your risk of serious health problems) can have

a greater effect than a positively framed message (e.g., Quitting smoking will

make you feel healthier) when in contemplation stage [37]. A common prob-
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lem of TTM, however, is the ambiguous boundaries between different stages of

change as discussed in section 2.4.

Figure 7.3: Phases of MOST

7.1.3 Data driven multi-component tailoring

Several limitations of TTM are overcome with data-driven tailoring ap-

proaches, namely Multi-phase Optimization Strategy (MOST) and Sequential

Multiple Assignment Randomized Trial (SMART) [37]. MOST considers several

treatment components, finds the combinations of components that are known

to work better together, and uses the combination for future treatments. e.g.,

for depression treatment, intervention components may include (1) age and (2)

type of therapy: anti-depression medication or cognitive behavioral therapy.
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MOST first conducts a screening phase, where it determines what type of com-

ponent combinations, i.e., antidepressant drug or cognitive behavioral therapy,

work best at what age (Figure 7.4). Typically a fully-crossed factorial design

is used to find best intervention combinations. When the screening phase is

conducted to create initial guesses, a confirmatory phase follows the screening

phase, where a randomized control trial is conducted to confirm the efficacy of

the best known treatment component combinations established in the screening

phase. An outcome of a MOST experiment is a strategy for adapting or tailor-

ing future treatments. For instance, a treatment might suggest to use cognitive

behavioral therapy for patients under the age of 30 years.

Figure 7.4: SMART for Bi-polar intervention

On the other hand, Sequential Multiple Assignment Randomized Trial

(SMART) applies data-driven tailoring similar to MOST, but SMART makes as-

sessment of patient health status at multiple points over time and adapts inter-
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ventions accordingly3. In many cases, behavior change intervention is a process

of overtime, and if one intervention component is not effective then a different

component is tried. SMART uses reinforcement learning techniques to learn ac-

tions or treatments for different assessments made at different times. For exam-

ple, a negatively framed message can be issued when a patient starts to relapse

to smoking. More complicated examples can depend on certain values of as-

sessments/observations, and subsequently tailor the interventions (Figure 7.4).

7.1.4 Personalized components and continuous tailoring

However, there are a few limitations of prior data driven assessment tech-

niques, especially considering the modern technical advances of mobile com-

puting and sensing. First, SMART does data driven adaptation/tailoring, but

the adaptation/tailoring happens after fixed intervals, e.g., often after days or

weeks4. However, tailoring can go beyond the fixed interval measurements, and

can be continuously conducted. e.g., a walking suggestion can be given when

an individual comes to his/her office, no matter when they arrive at the office.

Such continuous measurement and subsequent adaptation of interventions is

now feasible, because our phones can understand the contextual changes, and

can also deliver the intervention at the right place and time. Secondly, the treat-

ment messages/medications in SMART are a predetermined set, the appropri-

ate messages/medications are adapted to the response of the user. e.g., SMART

may have a generic pool of messages namely walk 30 minutes or take small

walking breaks. Users see messages, they respond/follow the suggestions, and

SMART adapts future suggestions. However, the interventions could be per-

3MOST only intervention at the start
4There is a modern version of SMART, called Just-in-time-adaptive-intervention (JITAI),

where the assessments are made 4 times a day [107][93].
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sonalized itself, and can be derived from the life or routine a patient lives in

(e.g., MyBehavior). And, if interventions are derived from an individuals be-

haviors, the treatments become easy to follow, which alleviates the important

problem of adherence.

7.2 Ways to generalize and extend MyBehavior

As discussed earlier, MyBehavior shows an entirely new way to create

personalized and contextualized intervention, where prior work only used a

generic set of suggestions that are same across population. Furthermore, it is

straightforward to extend MyBehavior, such that a user is prompted with the

personalized suggestions at the right context or moment. e.g., every time a user

reaches her office, a reminder can be given to take small walking breaks. We

strongly believe such contextualization and personalization can go beyond food

and exercise suggestions, and can be extended for other health domains. In ad-

dition, such data-driven personalization can be low-effort and meet the needs

of users better, as mentioned before.

In the following, I will discuss several recipes and future challenges for de-

veloping MyBehavior-alike systems. I will go beyond food and physical activity

suggestions, and discuss other health domains where MyBehavior-alike tech-

nologies can be useful. In addition, I will use data from MyBehavior studies,

and several other data sources to solidify my points.

Recipe #1: Focus on personalizing treatment first

Our first recipe is to personalize recommendations first, and then try to

adapt/appropriate the recommendations for different contexts. In other words,

132



the first step should only contain suggestions, and the users should themselves

figure out when or where to perform what suggestion5. We recommend this

recipe for the following reasons:

Adapting to context is hard, especially with less data

We argue for this proposition with an example. Let us consider the system sug-

gests to go to gym, which is a past behavior from the user. Now people normally

want to go to the gym 3-4 times per week, but they may fail to do so regularly

because of high stress, negative emotional state or environmental barrier like

snow storm. It is quite hard to quantify or adapt gym suggestions for all these

contexts, i.e., emotion, stress, or barriers. This is because of two reasons: (i) we

need to interrupt the user to get input about contexts, (ii) the amount of different

contexts can be many, and they can sometimes differ for different individuals.

Therefore, it is hard to adapt suggestions for all these contexts, especially when

there is less data at the beginning.

Human behavior is highly predictable, even with less data

Personalized health suggestions are created by relating the suggestions to user

behaviors. Fortunately many of the user behaviors are highly predictable. For

instance, the places we stay sitting or normally wake are quite repetitive. Fur-

thermore, most of our daily social interactions are also limited to a number of

people. Formally, most of our behaviors follow a heavy tail nature. Figure 7.5

shows three cases where we plot the distribution of exercise, and social inter-

action behaviors. Figure 7.5a shows nearly 80% of calorie burning physical ac-

tivity behaviors can be predicted in less than 10 days. This means people are

highly repetitive, and their behaviors can be predicted within a small amount

5This is exactly what MyBehavior does in its current iteration: it just provides some person-
alized suggestions and user figure out to them in the right contexts
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of time. Figure 7.5b shows the case for social interactions, where nearly 75% of

the users sent 80% of their SMSs to less than 7 people. Therefore peoples’ social

behaviors are highly predictable, and a feedback system can promote socializa-

tion or social support by taking advantage of this regular nature of our social

life.

(a) (b)
Figure 7.5: High repetitiveness in human behavior (a) shows the percentage of phys-
ical activity behaviors discovered over days and (b) shows how many receivers it
took too send 80% SMSs (N = 125) [11]. The fraction of users are on the Y-axis and
the number of receivers in the X-axis.

A bandit can easily pick these frequent or repetitive behaviors early as part

of exploit suggestions. Furthermore, since human behaviors can change, Bandit

in an adversarial setting can detect these changes and adapt to the most recent

behaviors.

Recipe #2: Concentrate on contextualized adaptation second

In the earlier recipe, we argued that it is hard to contextually adapt the sug-

gestions. However as more data becomes available, a few suggestions can be

contextually adapted without making errors. Specifically, we hypothesize that

there are three different levels of contexts that can be relevant for contextualiz-

ing health suggestions:
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Globally fixed contexts

These types of contexts are not individualized, and are generally true across

populations. For instance, during inclement weather, the system can refrain

from suggesting outdoor activities. Similarly, snowboarding is an exercise that

can be done only in winter. Other less obvious circumstances can be when

users have barriers; e.g., negative emotions, depressive symptoms or injuries;

users need to be suggested only activities that are not hard. For these types

of cases, the system can have predefined models that do not need adaptation

across users.

Individually fixed contexts

Some contexts are fixed at an individual level. For instance, some activities are

carried out only in the weekend or specific times of week/day. Furthermore,

user locations are big determinants of what actions they can perform. For in-

stance, when I moved to SF for a summer internship from Ithaca in 2014, a lot

of my activities changed. I could not eat some foods I used to eat, I could not

do some exercises I used to do, and I did not talk to some people I used to talk

to. Most importantly, some of the location changes at a smaller time scale also

affect which suggestions can be carried out. e.g., every time we reach the office,

no activity suggestion near our home can be performed. Many of these contexts

can be mined/learned with simple heuristics, e.g., suggesting actions that are

only near by.

Individually dynamic/changing contexts

These are contexts that are distinct and dynamic to the person/user. For in-

stance, different users have varying needs and they change over time. Further-

more, similar suggestions may work for one user and it may not work for oth-

135



ers. Part of these person-specific differences can be learned using an interactive

learning technique like reinforcement learning. However, sometimes learning

may not be sufficient, because all human behaviors can not be predicted, as hu-

mans have free-will on what they want to do. Fortunately, a large amount of

human behaviors are repetitive, and therefore predictable. As a result, the hope

is most of the context-aware-suggestions would be accurately delivered.

Recipe #3: Ground personalized treatments in theory

It is important that the suggestions or treatments are grounded in theory of

behavior change and medical literature. There are at least two reasons behind

this proposition: Firstly, the use of theories ensures that we are not reinventing

the wheel, and making use of the existing knowledge of health behavior change

that are known to work. We discussed this issue at length in Chapter 2.

The second reason to include theory is to rank the suggestions, so that the

top ranked suggestions are the most effective to make a desired change. Note

this is very important, when there is no data from which some labeled rank

can be learned [43][71]. For instance, MyBehavior starts without labeled ranked

data, and MyBehavior has to somehow find a way to transform the data to a

ranked suggestion list. We got out of this predicament by imposing the “low-

effort” proposition from Fogg’s behavior model. More precisely, the embedding

of theory into the ranking suggestions helped us to crack open the sensor data

driven health behavior change space. For similar mobile-data driven recom-

mender systems, theory can guide what criteria should be optimized. e.g., for

socialization, the system can optimize for increased social support from strong

ties [139] and building a bigger network of people including weak ties [137].
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In addition, if we look closely in other domains of ranking, e.g., informa-

tion retrieval or search engine, similar outside knowledge is imposed when no

ranking data is available. For instance, information retrieval used tf-idf [135],

and search engines used hubs-authority [81] or page rank [116] to impose im-

portance of information in web-corpus or collection of documents. However,

once user data becomes available, more and more subtleties can be studied and

learned from data. e.g., many of web-search engines personalize content based

on users’ clicks or browsing behaviors [33].

Recipe #4: Iterate on design and ideas

It is hard, if not impossible, to make a first version of MyBehavior-alike tech-

nology and expect the first version to work perfectly in all situations. There are

always scopes for further improvement. There are two types of these improve-

ments: (1) improving the usability of app with iterative design (2) improving

on the core ideas of the feedback mechanism itself, and generate knowledge for

subsequent research. I explain them in more detail below:

Usability research: Machine learning and behavior change theories alone can

not immediately transfer into suggestions that users can understand and fol-

low6. To enhance understanding, usability testing and improvements are nec-

essary. These improvements can be done with small scale pilot studies [80]. We

have discussed such usability concerns earlier, where there were problems with

manual journaling and human-control. In addition, there were multiple itera-

tions of MyBehavior design to effectively communicate the suggestions. Fig-

ure 7.6 shows several of such user interface design changes.

6Mohr et al. [102] argues that mobile health app should have two aims. (1) clinical aim to
improve life (2) usability aim of making the app usable.
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Figure 7.6: Evolution of messaging used in MyBehavior suggestions. Left to right is
older to newer.

Iterative improvement of ideas: Mixed methodologists argue that knowledge

generation in science is an iterative process that loops between inductive and

deductive phases [151]. In the inductive phase, initial ideas are gathered from

existing theories and past domain knowledge. Subsequently a few hypotheses

are generated. Then an app is made, and the hypotheses are tested. The result

of the hypotheses are analyzed in the deductive phase. In addition to results,

other observations can be acquired with interviews and log. These data can

be analyzed with thematic analysis [28] and secondary analysis [41][73]. Such

analysis can reveal what the initial version what was missing and what can be

added for the future version. With that we again enter the inductive phase.

For instance, the first version of MyBehavior was created following the low

effort theory from the Fogg Behavior Model (FBM) [52]. This first version

showed some efficacy, but we found limitations in user control. We combined
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the finding with the motivational aspect of FBM, and the second version is cre-

ated. However, users wanted to be notified to perform the suggestions. FBM

also mentions that the user needs to be prompted at the right moment of when

s/he can act on the suggestion. A future version of MyBehavior is already in

works which can prompt the users at the right location and time that is appro-

priate to follow a suggestion.

Figure 7.7: An iterative model of ideas and knowledge generation

Recipe #5: Make all the information reusable for later

The system operations in MyBehavior or similar systems can get compli-

cated because of the large amount of codes that get executed in a stage-by-

stage manner. e.g., in MyBehavior, the millisecond accelerometer data needs

to flow through several stages of processing pipelines to become human-

understandable health suggestions. These suggestions can be extended with

more functionalities (e.g., on a bad weather day, only indoor suggestions will
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be given). In that vein, if we want to create a MyBehavior for stress interven-

tions then the system needs to detect stressful episodes either from speech [95]

or other sensors [6]. It can then inform the user’s friends to talk or SMS to the

user for social support.

In order to support such complex interactions, a modular and extensible de-

sign with a client-server architecture is best suited. The modular design would

help better source code management and re-use of existing codes. The extensi-

ble design can help to build further new functionality. Finally, the client-server

architecture will allow for maximum decoupling of code [136]; i.e., the clients

and servers will run in their own processes and will only exchange necessary

data with nearly no shared code. Due to this decoupling, if the client or server

malfunction then the errors will not propagate from one code module to the

other.

Figure 7.8: The architecture of SAINT sensing and inference framework. SAINT
provides a unified bus interface to share data across sensing and inference modules.
Also client applications can connect with SAINT to receive SAINTs sensing and in-
ferred data.

In order to tackle such a modular, extensible and client-server architecture,

we built a sensing and inference toolkit, called SAINT [125]. Inside SAINT, the

sensing and inference codes are separated into distinct modules. These modules

can share their data over a unified bus to create newer modules (Figure 7.8). Ar-

140



chitecturally the bus system is similar to publisher-subscriber architecture [49].

The bus is implemented in an energy efficient manner with fast circular buffers

and inters process communication.

Challenge #1: Hard to quantify rewards

An important question is how we can extend MyBehavior’s personalized

suggestion for other domains, namely sleep, stress, etc. Technically, what needs

to be done is to understand some user behaviors that can be targeted for sugges-

tions in order to improve certain well-being. The behavior to target are typically

identified in terms of the reward in the overall payoff, which is the same as over-

all well-being improvement. However, a favorable thing for physical activity or

food was that every time an action is taken (or suggestion is followed), then the

reward, i.e., calorie loss or gain, was observed immediately, and these calorie

gains/lost accumulated for overall fat loss.

This is not the case for other problems. For instance, a sleep recommender

system can suggest to not drink coffee, not to workout late in the night, or have

sunshine early in the morning etc [34][3]. There may be other behavioral factors.

e.g., for some individuals, if they go to play indoor soccer or some other sports

in the afternoon, then they tend to have a better sleep later in the day. However,

for some people, some of these suggestions are effective, and for others, the sug-

gestion may not work; therefore, adaptation and personalization are necessary.

But, every time coffees are drunk, the immediate effect of drinking coffee can

vary for different people, and the effect is not evident unless we wait at the end

of the day to see how much they have actually slept. Furthermore, the user may

have done other things that may or may not affect sleep.
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Fortunately, such an adaptive system is still an online decision-making prob-

lem, similar to bandit algorithms. Bandit algorithms are well studied and are

already extended for a lot of different circumstances than the standard setting

described earlier [29]. One of such bandit is called the “complex action ban-

dits”, where an action consists of a collection of arms, and an aggregate reward

is received at the end of day for the action [60]. Complex action bandits use

a Bayesian bandit approach to update joint probability distribution of rewards

for arms, and subsequently suggest arms that have high marginal rewards [74].

For sleep recommendation, this is similar to giving a few suggestions for sleep-

ing better; e.g., drink less coffee, expose to sunlight earlier in the day; together

at the start of the day. At the end of the day, a feedback is received on how

long the users slept. From the reward, we can figure out whether the sleep was

good or bad, and which behaviors commonly appear for good or bad sleep.

Subsequently personalized suggestions would be issued to continue/avoid the

behaviors that cause good/bad sleep.

Challenge #2: Going social

MyBehavior is currently based on leveraging a users own behavior. How-

ever, people by nature are not solitary and they are influenced by social con-

texts [45]. Therefore behavioral change can be influenced by the interactions

of other people. For instance, the food recommendation could be augmented

by foods that nearby friends are consuming. Such local-social information can

increase likelihood of adherence. Systems could leverage which food items are

more easily accessible if local information is known [52] or a user may be more

influenced by food items present in a current social group [35]. Computation-

ally, the inclusion of local-social factors mean that we are moving from a sin-
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gle agent to a multi-agent problem. There is already extensive literature on

multi-agent systems and game theory, which could be utilized to build intelli-

gent local-social recommender systems [150].

7.3 Conclusion

Health data acquisition using smartphones is becoming more commonplace

with a myriad of health apps. In addition, hardware manufacturers, such as

Apple and Google, now support efficient sensing and processing at the hard-

ware level, which is making data collection even more achievable. However,

these improvements in measurements or acquisition did not match with health

feedback application that utilizes the finer details in the data. In this chap-

ter, we presented an in-depth case study of MyBehavior, which is the first at-

tempt to bridge the gap between mobile data and health recommendation with

a deeper analysis of data. MyBehavior provides specific personalized health

recommendations from physical activity data, using off-the-shelf reinforcement

learning techniques. MyBehavior has also been shown to promote higher lev-

els of physical activity than generic suggestions from health coaches. We have

also presented several extensions to the MyBehavior idea in domains of food

and chronic back pain. Several takeaways for future MyBehavior alike systems,

along with open questions for future explorations, are also discussed. We be-

lieve this is just the start, and we envision MyBehavior like systems would

be more common as we move into a future, where large amount of personal

data are available through mobile sensors, health apps, phone usage traces, and

wearables. Similar automated technologies for personalized recommendations,

namely Netflix for movies or Google for web search, have already revolution-

ized the way we consume entertainment and information. MyBehavior and
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similar technologies can do the same, and can provide personalized health rec-

ommendations automatically at scale.

144



CHAPTER 8

APPENDIX

8.1 List of all generic suggestions

Summary of all the generic suggestions:

Food suggestions

1. Snack on a handful of nuts, e.g. almonds (20ish)

2. eat eggs (hardboiled, poached, scrambled) for any meal or snack

3. oatmeal for breakfast

4. put mustard instead of mayonnaise on sandwich

5. use a whole wheat wrap instead of bread for a sandwich

6. snack on baby carrots or celery sticks with hummus

7. apple with nut butter for a snack

8. eat soup (clear broth not creamy)

9. small piece of lowfat cheese or a string cheese for a snack

10. try sweet potatoes instead of white potatoes

11. snack on salsa and baked tortilla chips

12. put lowfat turkey and lots of veggies on a sandwich

13. wholegrain pretzels for a snack

14. snack on a rice cake with hummus or nut butter

15. whole wheat english muffin with nut butter for breakfast
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16. eat fresh fruit (apple, banana, orange, pear, plum, red grapes, kiwi, berries)

17. eat whole fruit instead of drinking fruit juice

18. use skim milk instead of halfandhalf or whole milk in coffee

19. low fat greek yogurt for breakfast, lunch or a snack

20. cottage cheese for a snack or lunch

21. snack on airpopped or light microwave popcorn

22. drink green tea or water instead of soda

23. salad with light dressing for lunch

24. steam or roast your vegetables (broccoli, squash, asparagus, etc)

25. shrimp or other shellfish for dinner

26. skinless chicken breast for dinner

27. fish for dinner

28. lean meat (pork tenderloin, lean beef, etc) for dinner

29. replace meat with tofu, tempeh or seitan

30. eat beans, lentils, or chickpeas instead of meat

31. wholewheat pasta with red sauce and veggies for dinner

32. eat brown rice instead of white

Exercise suggestions

1. Walk 30 minutes

2. Add intervals: walk 5 minutes, run 5 minutes, repeat 3 times
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3. Take the stairs instead of the elevator whenever possible

4. Take a dog for a walk

5. Swim a lap, rest for 1 minute, repeat 510 times

6. Try a fitness class at the gym

7. Strength training bodyweight exercises like pushups, tricep dips, squats,

lunges, planks

8. Yoga

9. Park at the far end of the parking lot to walk further

10. Yardwork
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