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Abstract 23 

Mobile health (mHealth) interventions can enable new ways to improve health outcomes by 24 

intervening in the moment of need or in the right life circumstance. With recent advances in 25 

mobile computing and sensing techniques, mHealth interventions are now technologically 26 

feasible; current off-the-shelf mobile phones can acquire and process data in real time to deliver 27 

relevant interventions in the moment. Learning which intervention to provide in the moment, 28 

however, is an optimization problem. This book chapter describes one algorithmic approach, a 29 

“bandit algorithm,” to optimize mHealth interventions. Bandit algorithms are well-studied and 30 

are commonly used in online recommendations (e.g., Google’s ad placement, or news 31 

recommendations). Below, we walk through simulated and real-world examples to demonstrate 32 

how bandit algorithms can be used to personalize and contextualize mHealth interventions. We 33 

conclude by discussing challenges in developing bandit-based mobile health interventions.  34 

 35 

1. Introduction 36 

Before mHealth, the standard of care was periodic visits to a clinician’s office, interspersed with 37 

little to no patient support in between visits. At the clinician’s office,  data is collected to 38 

describe the patient’s state at that visit time and self-report data about the patient’s state prior to 39 

the current visit time is collected through an error-prone mechanism of recalling past events.  40 

The mHealth model has enabled significant progress in-situ data collection between clinic visits; 41 

phone sensors can now capture personal data at a millisecond level, and improvement in user 42 

interfaces has reduced the burden of self-report information [18]. mHealth interventions using 43 

persuasive design features are promising approaches for improving patients health [19,20]. 44 



However providing effective interventions personalized to the patient between patient visits 45 

remains challenging.  46 

 47 

Two key components of intervening at the right time are personalization and contextualization. 48 

Personalization is the process of matching an individual’s preferences and lifestyle. e.g., a 49 

physical activity intervention can say, “You walked 10 times in the last week near your office. 50 

Don’t forget to take small walks near your office today.” Such personalization can lower barriers 51 

to acting on the suggestion [2]. Contextualization takes personalization one step further by 52 

delivering interventions at moments of need or at an opportune moment when the intervention is 53 

easy to follow [1]. e.g., when a participant reaches the office, a push notification with the earlier 54 

walking suggestion can be sent, or, just after a high risk teen reports high stress, a SMS can be 55 

sent with ideas to reduce stress.   56 

 57 

Contextualization and personalization, are complex problems because different people may 58 

prefer different interventions and these preferences can vary by context. Fortunately, similar 59 

problems have been solved before. When Google places ads or Netflix suggests movies, they 60 

adapt their recommendation based on user preferences and characteristics, utilizing bandit 61 

algorithms. Here we describe how bandit algorithms can be repurposed to personalize and 62 

contextualize mHealth interventions. We will start with a simple example, where we personalize 63 

a daily list of physical activity suggestions to an individual. We will then extend this simple 64 

example to account for contextual factors (e.g., weather). We conclude with a real-world 65 

example and discuss future challenges in developing personalized/contextualized interventions 66 

with bandit algorithms. 67 



 68 

 69 

2. Background 70 

Bandit algorithms: “Bandit algorithms” are so called because they were first devised for the 71 

situation of a gambler playing one-armed bandits (slot machines with a long arm on the side 72 

instead of a push button). Each time the gambler picks a slot machine, he/she receives a reward. 73 

The bandit problem is to learn how to best sequentially select slot machines so as to maximize 74 

total rewards. The fundamental issue of bandit problems is the exploitation-exploration tradeoff; 75 

here exploitation means re-using highly rewarding slot machines from the past and exploration 76 

means trying new or less-used slot machines to gather more information. While exploration may 77 

yield less short-term payoff, an exploitation-only approach may miss a highly rewarding slot 78 

machine. Researchers have proposed solutions to the bandit’s exploit-explore tradeoff across 79 

many areas. In particular, once the relevance of bandit algorithms to internet advertising was 80 

understood, there was a flurry of work [4]. Nowadays, bandit algorithms are theoretically well 81 

understood, and their benefits have been empirically demonstrated [4,5].  82 

 83 

An important class of bandit problems is the contextual bandit problem that considers additional 84 

contextual information in selecting the slot machine [6].  Contextual bandit problems provide a 85 

natural model for developing mobile health interventions. In this model the context is the 86 

information about the individual’s current circumstances, the slot machines correspond to the 87 

different intervention options, and the rewards are near-time, proximal, outcomes [3]. In this 88 

setup, optimizing mHealth intervention delivery is the act of learning the intervention option that 89 



will result in the best proximal outcome in a given circumstance.  This is same as solving the 90 

contextual bandit problem.  91 

 92 

3. Optimizing intervention with a Bandit algorithm  93 

We will use two examples to explain how bandits can be used to optimize an mHealth 94 

intervention for an individual. In section 4, we will discuss another real-world mobile application 95 

that builds on the ideas introduced in the first two simple examples. 96 

 97 

In our first example, the bandit algorithm will be used to select an optimal set of five physical 98 

activity suggestions, for an individual, from a set of ten suggestions. A set of five suggestions is 99 

optimal if the set leads to the highest level of daily activity for that individual. The second 100 

example extends the first by finding a set of five suggestions for each of several contexts. 101 

Contextualizing suggestions can be helpful because the same suggestion may be more actionable 102 

in certain contexts (e.g., good weather or day of the week). 103 

 104 

 

1. Walk 30 minutes  

2. Add intervals: walk 5 minutes, walk very fast for 5 minutes, repeat 3 times  

3. Take the stairs instead of the elevator whenever possible  

4. Go for a walk with a friend or your dog  

5. Swim a lap, rest 1 minute, repeat 10 times  

6. Attend a fitness class at your gym  



7. Try some of the strength training and bodyweight exercises illustrated by the fitness 

app on your phone  

8. Do yoga   

9. Park at the far end of the parking lot to walk farther  

10. Do yardwork for at least 10 minutes  

Table 1: List of 10 suggestions 105 

 106 

3.1 Personalizing suggestions for an individual 107 

Consider a scenario in which Jane's health plan gives her a physical activity tracker and a 108 

smartphone app. Jane’s health plan has found that the ten activity suggestions from Table 1 often 109 

work for many less-active people to increase their activity. Note that the order of suggestions in 110 

Table 1 does not imply any specific ranking. It is unlikely, however, that every individual will be 111 

able to follow or prefer to follow all the 10 suggestions equally and there will be inter-personal 112 

variability in which suggestions are followed and to what degree. Thus, we set the goal of 113 

learning the five suggestions with the highest chance of maximizing Jane’s activity. We use the 114 

bandit algorithm, which is running as part of Jane’s smartphone app, to achieve this goal. Each 115 

morning, the app issues a set of 5 suggestions. The app then monitors Jane’s activities 116 

throughout the day and uses that information to choose 5 suggestions for the following day.  117 

 118 

Formally, we will refer to each set of five activity suggestions as an intervention option or 119 

action.  This intervention option or action is the particular choice of the five suggestions. On the 120 

morning of day 𝑡, the app suggests to Jane the action 𝐴# , where 𝐴# = [𝑆#', 𝑆#), 𝑆#*, … , 𝑆#',]. is a 121 

10 × 1 vector of binary variables. 𝑆#2 has a value of 1 if the 𝑖-th suggestion from Table 1 is 122 



shown to Jane on day 𝑡, and 0 otherwise. Thus 𝐴# will have 5 entries equal to 1 and 5 entries 123 

equal to 0. Further, let 𝑌# denote the number of active minutes for Jane on day 𝑡, which might be 124 

called the proximal outcome or reward of action 𝐴#.  125 

 126 

Consider the following linear regression model for the mean of the daily active minutes 𝑌# on 127 

day 𝑡 in terms of the suggestions: 128 

 
𝑬[𝒀𝒕|𝑨𝒕] = 	;𝜷𝒊𝑺𝒕𝒊

𝟏𝟎

𝒊A𝟏				
		 = 	𝜷𝑻𝑨𝒕	

 

(1) 

where the second equality is written more compactly by using vector notation, 𝛽 =129 

[𝛽', 𝛽), … , 𝛽',].. Here 𝛽', 𝛽), 𝛽*, … , 𝛽', respectively represent suggestion 1, 2,3, … ,10s 130 

contribution to Jane’s number of active minutes. Therefore, Equation 1 has the following simple 131 

interpretation: 𝑌#, the number of daily active minutes, is the sum of the effects of the 5 activity 132 

suggestions provided on day 𝑡 (i.e., suggestions for which 𝑆#2 = 1).  133 

 134 

Formally, our goal is to discover the best action 𝐴# = 𝑎∗ that is, the set of 5 suggestions that 135 

makes Jane most active (that results in the highest mean daily active minutes). We can formally 136 

write this goal as: given 𝛽, determine the action 𝑎∗ for which  137 

 𝜷𝑻𝒂∗ ≥ 𝜷𝑻𝒂 (2) 

where 𝑎 is a combination of 5 suggestions from Table 1. 𝛽 is, however, unknown. We can 138 

estimate Jane’s 𝑎∗	by running experiments in the following way: at the start of a day 𝑡, the app 139 

selects action 𝐴# (in other words, it delivers to Jane a combination of 5 suggestions from Table 140 

1). The tracker then counts the number of minutes Jane is active on the day (note that this 141 

number is the proximal outcome 𝑌#). If the 5 suggestions are useful, then Jane will be more 142 



active that day and 𝑌# will be high compared to other days with a different set of 5 suggestions. 143 

Now, the question is: how to select the 5 suggestions each day? One simple approach is to select 144 

5 suggestions out of 10 with equal probability. But such a uniform selection strategy will select 145 

more useful and less useful suggestions equally. A more sophisticated approach is to use the 146 

information already available from the past experiments to select future suggestions that will 147 

both yield additional information about 𝑎∗ and give as few less useful suggestions as possible. 148 

Note that here we face the same exploit-explore tradeoff faced by the classic bandit setting’s 149 

gambler – i.e., how to balance exploiting suggestions that seemed useful in the past with 150 

exploring less frequently issued suggestions.  151 

 152 

An effective approach to delivering less useful suggestions as little as possible is “optimism in 153 

the face of uncertainty” epitomized by the Upper Confidence Bound (UCB) technique [7,8]. 154 

Bandit algorithms based on the UCB have been well studied and possess guarantees of 155 

minimizing the number of less useful suggestions. The key intuition behind the UCB idea is the 156 

following: First, for each choice of action 𝑎#, a confidence interval is constructed for the linear 157 

combination 𝛽.𝑎#. Recall this linear combination represents 𝐸[𝑌#|𝐴# = 𝑎#], the expected 158 

proximal outcome after receiving action, 𝑎#. Then the UCB bandit algorithm selects the action 159 

with the highest upper confidence limit. Note that the upper confidence limit for 𝛽.𝑎# can be 160 

high for either of two reasons: (1) either 𝛽.𝑎# is large and thus 𝑎# is a good action to make Jane 161 

active, or (2) the confidence interval is very wide with a high upper limit, indicating that there is 162 

much uncertainty about the value of 𝛽.𝑎#. Using the upper confidence limit represents UCB’s 163 

optimism; UCB is optimistic that actions with high upper confidence limits will be the best 164 

actions, even though a larger upper confidence limit can mean more uncertainty. However, if an 165 



action with high upper confidence is indeed not the optimal action, then selecting the action will 166 

reduce the uncertainty about the effect of this action.  This will help UCB realize that the action 167 

is indeed not useful.  168 

 169 

How does UCB choose an action using the upper confidence interval? By following these two 170 

steps. The first step involves using Equation 1 to estimate 𝛽	assuming homogeneous error 171 

variance. We might use ridge regression to estimate 𝛽 because ridge regression regularizes to 172 

avoid overfitting, especially when Jane has just begun to use the app and we have less data [8,9]. 173 

In this case the estimator of 𝛽, denoted by 𝛽#L , after 𝑡 days of using the bandit algorithm is: 174 

 
𝜷𝒕M = 𝚺L𝒕O𝟏 P;𝑨𝒖𝒀𝒖

𝒕

𝒖A𝟏

R (3) 

where ΣT#O' = ∑ (𝐴W𝐴W.) + 𝐼',#
WA'  and 𝐼', is an 10 × 10	identity matrix. Equation 3 is the standard 175 

solution for ridge regression. The second step is to construct an upper confidence limit for 𝛽.𝑎 176 

for each possible action 𝑎; the upper confidence limit on day 𝑡	for action 𝑎	is given by 𝛽[#.𝑎 +177 

𝛼]𝑎.ΣT#O'𝑎, where 𝛼 is an appropriate critical value. Note, since we assumed homogeneous error 178 

variance,  ΣT#O' is proportional to the covariance for 𝛽#L , and 𝑎.ΣT#O'𝑎 is the covariance of 𝛽.𝑎. 179 

Thus, ]𝑎.ΣT#O'𝑎 represents standard deviation of 𝛽.𝑎 and the upper confidence limit of 𝛽.𝑎 has 180 

an interpretable form, which is simply the current estimate,  𝛽[#.𝑎, plus its standard deviation 181 

multiplied up to a constant factor 𝛼. Then, to choose the UCB action for day 𝑡 + 1, we calculate 182 

the 𝑎#^'	for which 183 

 184 



 
𝜷L𝒕𝑻𝒂𝒕^𝟏 + 𝜶]𝒂𝒕^𝟏𝑻 𝚺L𝒕O𝟏𝒂𝒕^𝟏 		≥ 			𝜷L𝒕𝑻𝒂 + 𝜶]𝒂𝑻𝚺L𝒕O𝟏𝒂 (4) 

for all actions 𝑎. i.e., 𝑎#^'	is selected to maximize the upper confidence limit on the mean of 185 

𝑌#^'.   This approach possesses strong guarantees to minimize the number of less useful 186 

suggestions [8,17]. 187 

 188 

Here we summarize how the UCB bandit algorithm works on Jane’s smartphone. First there is an 189 

“exploration phase” to allow the UCB algorithm to form preliminary estimates of 𝛽. This phase 190 

lasts for a number of days, say 𝑡, days, during which each morning the UCB bandit algorithm 191 

randomly selects an action, that is, uniformly selects five activity suggestions from the 10, and 192 

delivers these suggestions to Jane in the application.  Then at the end of day 𝑡,, the UCB bandit 193 

uses an incremental calculation to form 𝛽[#`
	  and ΣT#`

	  based on the selected action, Jane’s activity 194 

minutes, 𝑌#`, for that day and the prior day’s 𝛽[#`O'
	  and ΣT#`O'

	 .  Next the UCB algorithm 195 

calculates the upper confidence limit for each action and selects the action 𝑎#`^' with the highest 196 

upper confidence limit. On the next morning, Jane is provided the five suggestions as specified 197 

by 𝑎#`^'. The UCB algorithm repeats the process by estimating new 𝛽[#`^'
	   ΣT#`^'

	 		and an updated 198 

set of 5 suggestions are chosen for the next day and so on. 199 

 200 

3.1.1 A simulation example 201 

In this section, we use a simulated example to demonstrate how a UCB bandit algorithm can 202 

personalize suggestions for Jane. We assume the following simple model of how Jane responds 203 

to the suggestions: When Jane sees a suggestion, she follows it with probability 𝑝 or does not 204 

follow it with probability 1 − 𝑝. If Jane follows the suggestion, she spends 𝐷 minutes following 205 



it on a particular day. We assume 𝐷 is random and normally distributed, because Jane may not 206 

spend the same amount of time each time she follows the same suggestion. In Table 2, we 207 

created an artificial example scenario with 𝑝	and 𝐷 values for different suggestions. The 𝐷 208 

values are written as mean ± standard deviation. We also show the expected number of activity 209 

minutes that Jane spends following a suggestion when she sees it. This expected number is 210 

𝑝 × 𝐸[𝐷] + (1 − 𝑝) × 0 = 𝑝𝐸[𝐷]. These expected minutes are also 𝛽	values in equation 1. Note 211 

that 𝛽 values are unknown in real world setting. We use known 𝛽 values in a simulated example 212 

to show how the UCB algorithm finds the suggestions with higher 𝛽 values. 213 

 214 

Suggestions 𝒑 Duration, 𝑫 
(in minutes) 

Expected 
duration 𝑝𝐸[𝐷] 
(in minutes) 

1. Walk 30 minutes  
 

1 15 ± 4 15.0 

2. Add intervals: walk 5 minutes, 
walk very fast 5 minutes, repeat 3 
times  
 

1
90 21 ± 5 0.4 

3. Take the stairs instead of the 
elevator whenever possible 
  

5
7 7.5 ± 2 5.2 

4. Go with a friend or your dog for 
a walk  
 

6
7 22 ± 10 18.9 

5. Swim a lap, rest for 1 minute, 
repeat 10 times 
  

0 − − 

6.Attend a fitness class at your 
gym  
 

1
14 31 ± 5 2.2 

7. Try some of the strength 
training and bodyweight exercises 
illustrated by the fitness app on 
your phone 

0 − − 



 

8. Yoga   
4
7 18 ± 3 10.3 

9. Park at the far end of the 
parking lot to walk further  
 

4
7 11 ± 2 6.3 

10. Do yardwork for at least 10 
minutes 
 

3
14 24 ± 5 5.1 

Table 2: A simulated scenario for Jane where 𝑝	represents the probability of following a 215 
suggestion when Jane sees it, and if the suggestion is followed, “Duration” represents the number 216 
of daily minutes spent following the suggestion. Finally, 𝑝	and “Duration” are used to compute 217 
the expected value 𝑝𝐸[𝐷], which also represents 𝛽 values for the suggestion. 218 
 219 

With the above setup, we run the simulation in two stages. In the first stage, suggestions are 220 

included with equal probability in the five suggestions on each of the first fourteen days. This 221 

initial “exploration phase” helps to form an initial estimate of 𝛽. In the second stage, we run the 222 

UCB bandit algorithm: on each day, we compute 𝛽#L , according to equation 3, and choose an 223 

action using Equation 4. We run these simulation for 56 days, or 8 weeks. We run 200 instances 224 

of the simulation to account for randomness in the problem. One source of this randomness 225 

comes from the exploration phase, where the app generates non-identical sequences of random 226 

suggestions based on when Jane starts using the app. We deal with this randomness by resetting 227 

the randomization seed after each simulation run. Another source of randomness comes from the 228 

within-person variability of how Jane responds to the suggestions.  We create a second stream of 229 

random numbers to simulate how Jane responds to the suggestions. The seed of this second 230 

stream remains unchanged after each simulation run; we do not reset this seed because, doing so 231 

will add the randomness of resetting the seeds to the within-person variability.  232 

 233 



Table 3 shows the results, where we report the mean of the 𝛽 estimates. At the top, we list the 234 

actual 𝛽 values. We then list in each row how many times a suggestion is issued by UCB over a 235 

two week period. We use boldface for the top five suggestions (1st, 3rd, 4th, 8th, 9th in Table 1). 236 

The simulation shows that after the two-week exploration phase, UCB chooses the top 237 

(boldfaced) suggestions more times than the less useful ones. Since a suggestion can be picked 238 

only once a day, the top suggestions 1, 2, and 8 from Table 3 are picked nearly every day after 239 

the exploration phase (11-14 days between week 3-4, 5-6, and 7-8). However, suggestions 3, 9, 240 

and 10 all have similar 𝛽 values. As a result, UCB is often uncertain among them and chooses 241 

the 10th suggestion sometimes wrongly, since it is not in the top five suggestions. 242 

 243 

Suggestions 1 
2 

3 4 
5 6 7 

8 9 
10 

𝛽 15.0 0.4 5.2 18.9 0.0 2.2 0.0 10.3 6.3 5.1 

𝑁L (week 1-2) 7.1 7.2 7.0 7.0 6.8 6.9 6.9 6.8 7.1 7.1 

𝑁L (week 3-4) 12.4 3.9 6.3 13.4 2.8 4.5 2.5 9.6 7.8 6.5 

𝑁L (week 5-6) 12.8 3.5 6.3 13.7 2.6 4.3 1.7 10.1 8.1 6.7 

𝑁L (week 7-8) 13.1 3.4 6.4 13.8 2.4 4.3 1.6 10.1 7.8 6.8 

Table 3: Number of times suggestions are picked by the app within each of the two-week 244 
intervals. 𝑁L denotes the number of days the app selects a suggestion in the time frame mentioned 245 
within parenthesis. Note, the number of times a suggestion can be selected during a two-week 246 
period is at most 14 (i.e., 𝑁L ≤ 14).  247 

 248 

 249 

 250 



3.2. Optimizing interventions for different contexts 251 

In the earlier section, we discussed an example of personalizing suggestions with the UCB 252 

algorithm. Our goal was to demonstrate the inner workings of a bandit algorithm in a simple 253 

setting. Here we discuss extending the prior example to a more realistic setting where we tailor 254 

suggestion based on users’ context. Indeed, context can determine whether, and the degree to 255 

which, certain suggestions are actionable. For example, Jane may only be able to act on the 256 

yardwork suggestion on the weekend, or she may appreciate and act on the reminder to take her 257 

dog for a walk when the weather is good. By adapting suggestions to different contexts, we hope 258 

to enhance her activity level. Fortunately, we can contextualize suggestions by re-purposing the 259 

bandit technique described already. We briefly describe one way to do so below. 260 

 261 

 262 

 Context 

1 

2 

3 

4 

Bad weather, weekend 

Bad weather, weekday 

Good weather, weekend 

Good weather, weekday 

Table 4: Different types of contexts 263 

 264 

For clarity, we will first consider a very simple context involving only the weather and day of the 265 

week. For these two contexts, there are two states (i) weekend or weekday, (ii) good or bad 266 

weather, where we consider the whole day as bad weather if only part is. Thus, each day belongs 267 

to one of four different context combinations (see Table 4). Note this simple characterization of 268 



only 4 contexts is to convey the idea of contextualization rather than actually to realistically 269 

handle a large number of contexts. 270 

 271 

For these four context combinations, the task of contextualizing suggestions boils down to 272 

optimizing the suggestions for each of the four. An intuitive approach is to use 4 different bandit 273 

algorithms, one for each context combination. Depending on the context on day 𝑡, the 274 

corresponding bandit would be activated for optimizing suggestions for that context. Recall that 275 

an action is a set of five activity suggestions from the 10 in Table 1. Each of the four different 276 

bandit algorithms uses a model such as Equation 1 but with different 𝛽s due to the different 277 

contexts. We represent this difference by sub-scripting 𝛽	as 𝛽o for the 𝑘-th (𝑘 = 1,2,3,4) context. 278 

So, the goal is to learn the optimal action 𝑎o∗  that maximizes the average number of minutes 279 

active for Jane in context 𝑘. That is, for 𝑘 = 1,2,3,4 the goal is to learn the action 𝑎o∗  which 280 

satisfies 281 

𝛽o.𝑎o∗ ≥ 𝛽o.𝑎o 282 

Again, one UCB bandit algorithm can be run per context to learn the optimal five suggestions for 283 

that context. 284 

 285 

Note that using a separate bandit algorithm for each context is not a feasible approach in a real-286 

world setting; there are too many possible contexts. It would take the bandit algorithm many 287 

days to obtain good estimates of the 𝛽o parameters. However, we can use a few tricks to handle 288 

large number of contexts. First, we may know a priori that some suggestions are equally 289 

actionable across different contexts and some suggestions are not at all actionable in certain 290 

contexts. If the suggestions are equally actionable across contexts, we can use the same 291 



𝛽o	parameter values for these contexts. And if a suggestion is not actionable in a given context 292 

we can set its parameter in 𝛽o to zero. Second, we can pool information across people. For 293 

example, some suggestions, such as yardwork, are more actionable on weekends for most 294 

people. Thus, we don’t need to find 𝛽o for each user individually. Pooling information, however, 295 

requires a Bayesian approach where for a new user, initially 𝛽o is pooled from prior users and 296 

once some data from the user is available, 𝛽o is then adapted to make more user-specific 297 

changes. Bayesian approaches to bandit algorithms are beyond the scope of this chapter; but the 298 

techniques are along the same lines as UCB [10].  299 

 300 

4. A real-world example 301 

Earlier, we gave two simple examples of how the UCB bandit algorithm can personalize and 302 

contextualize mobile health interventions. Real-world examples, however, are more complicated, 303 

with many potential suggestions and many contexts. Below we discuss an mHealth app called 304 

MyBehavior that has been deployed multiple times in real world studies [11,12]. MyBehavior 305 

utilizes phone sensor data to design unique suggestions for an individual and subsequently uses a 306 

bandit algorithm to find the activity suggestions that maximize chances of daily calorie burns. 307 

Like the example in Section 3, MyBehavior issues the suggestions once each morning. The 308 

number of suggestions, however, is higher than in Table 1 because the suggestions in 309 

MyBehavior closely match an individual’s routine behaviors, and routine behaviors are dynamic. 310 

In the following, we briefly discuss how MyBehavior uses the bandit algorithm. More 311 

information on this can be found in [13].  312 

 313 



4.1 MyBehavior: Optimizing individualized suggestions to promote more 314 

physical activity  315 

The following discussion of MyBehavior first covers how unique suggestions are created for 316 

each individual. We then briefly discuss how a bandit algorithm is used to find optimal activity 317 

suggestions that have the highest chance of maximizing an individual’s daily calorie burn. 318 

 319 

The MyBehavior app tracks an individual's physical activity and location every minute. The 320 

detected physical activities include walking, running, driving, and being stationary. The app then 321 

analyzes the location-tagged activity data to find patterns that are representative of the user’s 322 

behaviors. Figure 1 shows several examples of behaviors found by MyBehavior. Figure 1a and 323 

Figure 1b respectively contain places where a user stayed stationary and a location where the 324 

user frequently walked. Figure 1c shows similar walking behaviors from another user. 325 

MyBehavior uses these behavioral patterns to generate suggestions that are unique to each 326 

individual. For example, one intervention may suggest an activity goal at specific locations that 327 

the user regularly goes to. Such tailoring makes feedback more compelling, since a user’s 328 

familiarity with the location enhances adherence [1]. 329 



 330 
Figure 1: Visualization of a user’s movements over a week (a) Heatmap showing the locations 331 
where the user is stationary everyday (b) Location traces of frequent walks for the user (c) 332 
Location traces of frequent walks for another user 333 
 334 

Specifically, MyBehavior creates three kinds of uniquely individualized suggestions: (i) for 335 

stationary behaviors, MyBehavior pinpoints the locations where the user tends to be stationary 336 

and suggests taking small walking breaks every hour in these locations. (ii) for walking 337 

behaviors, MyBehavior locates the different places the user usually walks and suggests 338 

continuing to walk in those locations (iii) for other behaviors, e.g., participation in yoga class or 339 

gym exercises, MyBehavior simply reminds the user to keep up the good work. Figure 2 shows 340 

several screen shots of the MyBehavior app, where Figures 2a-c are suggestions for three 341 

separate users. Since MyBehavior suggestions are tailored to the user, the first suggestion at the 342 

top of each screen shot is to walk, but the locations are different. Also, the first and third users 343 

receive a gym weight training exercise suggestion that the second user does not. 344 



 345 

Figure 2: MyBehavior app screenshots for three different users1 346 

 347 

Now, how does MyBehavior decide which suggestions to give? MyBehavior uses a bandit 348 

algorithm like that in Section 3’s first example, where suggestions are issued once a day. But 349 

MyBehavior can offer many more suggestions than Table 1 contains, depending on the variety of 350 

locations in which a user might be sedentary or active, etc. Fortunately, the bandit algorithm can 351 

still efficiently adapt to these high numbers of tailored suggestions. Rabbi et al [13] details how 352 

this optimization works, but the key intuitions are the following: (i) Most human behaviors are 353 

highly repetitive and routine and occur in the same locations. Routine behaviors and locations 354 

will be detected early and thus included soon in the individual’s list of suggestions. (ii) The 355 

suggestions relating to routine behaviors and locations are more likely to be followed than 356 

                                                
1 Figure 1 and 2 have been reproduced from Rabbi et al. [12] with appropriate permission from the authors.  



suggestions of non-routine behaviors in non-routine locations. Thus, the bandit will learn about 357 

the effects of these suggestions more quickly and these suggestions will likely remain effective if 358 

the user’s routine does not change.  359 

 360 

 361 

5. Discussion 362 

In the last two sections, we discussed several examples of how bandit algorithms can optimize 363 

mobile health interventions. The bandit algorithm balances experimenting with different activity 364 

suggestions and selecting activity suggestions that currently appear most useful. This balancing 365 

act ensures that the algorithm acquires necessary information while maintaining an engaging user 366 

experience by providing as few less-useful suggestions as possible. While we showed that bandit 367 

algorithms can be useful to personalize and contextualize suggestions, there are additional 368 

complexities in real-world mHeath intervention settings that generate new challenges for bandit 369 

algorithms to address:  370 

 371 

Ignoring delayed effects: In bandit algorithms, the optimal action is the action that maximizes 372 

the immediate reward (proximal outcome). In other words, bandit algorithms ignore the potential 373 

impact of the action on future context and future proximal outcomes. Some actions, however, 374 

can have long-term negative effects even if the short-term effect is positive. e.g., delivering an 375 

office walking suggestion may increase a user’s current activity level, but the user might become 376 

bored after repeating the office walk several days, thus future suggestions may be less effective.  377 

In these cases, other algorithms that explicitly allow past actions to impact future outcomes [14] 378 

might be used.  Precisely, the outcome of these algorithms are 𝑌# + 𝑉(𝑋#^'), where 𝑉(𝑋#^') is 379 



the prediction of the impact of the actions on future proximal outcomes given the context 𝑋#^' at 380 

the time 𝑡 + 1  (a bandit algorithm acts as if 𝑉(𝑋#^')=0). These algorithms tend to learn more 381 

slowly than bandit algorithms, since we need additional data to form the prediction 𝑉(𝑋#^'). We 382 

conjecture that the noisier the data is, the harder it will be to form high quality predictions of 383 

𝑉(𝑋#^') and thus as a result, bandit algorithms may still be preferable. 384 

 385 

Non-stationarity: Most bandit algorithms assume “stationary” settings; i.e., the responsivity of a 386 

user in a given context  to an action does not change with time. This assumption can be violated 387 

in real-word settings; in MyBehavior, for example, we observed that many suggestions become 388 

ineffective when people switched job and moved from one location to another. Such changes 389 

over time are often referred to as “non-stationarity.” Other types of non-stationarity can be 390 

caused by life events such as a significant other’s illness or aging. Bandit algorithms are typically 391 

slow to adapt to non-stationarity. Speeding up this process is a critical direction for future bandit 392 

research. 393 

 394 

Dealing with less data: In real world applications, where the number of contexts and actions are 395 

many, bandit algorithms will need a lot of burdensome experimentation to find the optimal 396 

action for a given context. One way around this is to use a “warm start.” A warm start set of 397 

decision rules that link the context to the action can be constructed using data from micro-398 

randomized trials [15] involving similar individuals. Recently Lei et al. [16] developed a bandit 399 

algorithm that can employ a warm start. However, we still need to test whether, and in which 400 

settings, warm starts will sufficiently speed up learning.  401 

 402 



Adverse effects: Since mHealth interventions are generally behavioral, the risk of personal harm 403 

is often minimal. Nonetheless, there could be potential iatrogenic effect because phones cannot 404 

capture every piece of contextual information and bandit algorithms ignore the long-term effects 405 

of interventions. Since bandit algorithms don’t take interventions’ long-term effects into account, 406 

the algorithm may notify or otherwise deliver interventions too much and thus cause annoyance 407 

and reduce app engagement. Future work needs to investigate how to account for such long-term 408 

adverse effects. Furthermore, current phone sensors cannot automatically capture critical 409 

contextual information such as a user’s health risks, preferences, barriers, emotional states, etc. 410 

Incomplete information may cause the algorithm to provide less appealing (e.g., not suggesting 411 

an activity that a user likes but didn’t do often in the past) and inappropriate suggestions (e.g., 412 

asking someone who is injured to  walk). Providing human control over the suggestion 413 

generation process can mitigate these problems; e.g., a user can delete inappropriate suggestions 414 

and prioritize the suggestions that are more appealing [12]. 415 

 416 

 417 
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