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Abstract Smartphone sensing and persuasive feedback
design is enabling a new generation of wellbeing apps capa-
ble of automatically monitoring multiple aspects of physical
and mental health. In this article, we present BeWell+ the
next generation of the BeWell smartphone wellbeing app,
which monitors user behavior along three health dimen-
sions, namely sleep, physical activity, and social interac-
tion. BeWell promotes improved behavioral patterns via
feedback rendered as an ambient display on the smart-
phone’s wallpaper. With BeWell+, we introduce new mech-
anisms to address key limitations of the original BeWell
app; specifically, (1) community adaptive wellbeing feed-
back, which generalizes to diverse user communities (e.g.,
elderly, children) by promoting better behavior yet remains
realistic to the user’s lifestyle; and, (2) wellbeing adap-
tive energy allocation, which prioritizes monitoring fidelity
and feedback responsiveness on specific health dimen-
sions (e.g., sleep) where the user needs additional help.
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We evaluate BeWell+ with a 27 person, 19 day field trial.
Our findings show that not only can BeWell+ operate suc-
cessfully on consumer smartphones; but also users under-
stand feedback and respond by taking steps towards leading
healthier lifestyles.
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1 Introduction

Our lifestyle choices have a deep impact on our personal
health. For example, our sleep, socialization and exercise
patterns are connected to the presence of a wide range of
health related problems such as, high-blood pressure, stress
[45], anxiety, diabetes and depression [22, 27]. Positive
health effects can be observed when these wellbeing indica-
tors (e.g., sleep, physical activity) are kept in healthy ranges.
However, people are typically not exposed to these health
indicators as they go about their daily lives. As a result,
unbalanced unhealthy lifestyles are present in the general
population. People demonstrate concern for some aspects of
their wellbeing, such as fitness or diet, yet neglect the well-
being implications of other behaviors, such as, poor sleep,
hygiene or prolonged social isolation. We believe this situa-
tion is caused by an absence of adequate tools for effective
self-management of overall wellbeing and health.

We envision a new class of personal wellbeing apps
for smartphones capable of monitoring multiple dimen-
sions of human behavior, encompassing physical, mental
and social dimensions of wellbeing. An important enabler
of this vision are the recent advances in smartphones, which
are equipped with powerful embedded sensors, such as
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an accelerometer, digital compass, gyroscope, GPS, micro-
phone, and camera. Smartphones present a programable
platform for monitoring wellbeing as people go about their
lives [49]. It is now possible to infer a range of behaviors
on the phone in real-time, allowing users to receive feed-
back in response to everyday lifestyle choices that enables
them to better manage their health. In addition, the popu-
larity of smartphone app stores (e.g., the Apple App Store,
Android Market) has opened an effective software deliv-
ery channel whereby a wellbeing app can be installed in
seconds, further lowering the barrier to user adoption. We
believe production-quality wellbeing apps will gain rapid
adoption globally, driven by: (1) near zero user effort, due
to automated sensor based activity inference and (2) uni-
versal access, only requiring a single download from a
mobile phone app store and installation on an off-the-shelf
smartphone.

In [34] we introduced BeWell, a wellbeing app that
runs on off-the-shelf sensor-enabled smartphones. BeWell
coarsely tracks the physical, social and sleep dimensions
of wellbeing by monitoring several key behavioral pat-
terns and providing feedback to the user. Ideally feedback
would allow users to easily understand the consequences of
their actions, enabling them to make appropriate changes
in their behavior and more informed choices going for-
ward. We evaluated BeWell through lab-based single phone
experiments that measured the resource requirements of
our design. In addition, a small five person experiment
was conducted to investigate the robustness of the activity
inferences BeWell performs [34]. These benchmark exper-
iments, although small-scale, highlighted key barriers to
wider-scale deployments. First, we found despite careful
engineering and even when using a high-capacity battery,
BeWell exhausted the battery life of the smartphone after
only 8-12 hours - forcing users to recharge multiple times
per day. Second, even with a small number of users we
encountered significant diversity, with users exhibiting a
wide range of behavioral patterns. As a result of this initial
finding, it became clear using a single static expectation of
ideal “healthy” behavioral patterns would lead to feedback
that was not consistently realistic for everyone; limiting the
ability of the system to scale to a larger population of users
with diverse health needs.

Guided by these insights gained in developing the orig-
inal BeWell app we propose BeWell+,1 which incorporates
a set of new wellbeing scaling techniques for generat-
ing community-guided wellbeing feedback and overcoming
energy constraints evident in resource limited smartphones:

1BeWell+ is available for download and use with any off-the-
shelf Android Smartphone. Please download BeWell+ from: http://
www.bewellapp.org

Community adaptive wellbeing feedback We design a well-
being feedback mechanism in which the expectations of
healthy behavioral patterns are adjusted to remain realistic
for what is possible in the near-term for certain user com-
munities. Instead of only relying on generally ideal (i.e., one
size fits all) behavioral feedback (e.g., suggesting 8 hours of
sleep) our new BeWell+ design is based on the community
the user is associated with – their peer group. For example,
it is unrealistic to expect an elderly person to meet the same
goals for physical activity as a young adult; or for that mat-
ter a doctor that is on call having the same goal for hours
of sleep as a high schooler. For each user a “wellbeing net-
work” is identified in the user population, based on shared
behavioral traits. Within the network positive and negative
“role-models” are identified, and their behavior – along with
established ideal behavioral goals – determine user well-
being feedback. As a result, users are not provided with
unrealistic expectations of behavior change, since they are
compared to role-models/groups of peers. Here health goals
are tailored to peer group norms as opposed to a general-
ized population wide norm. As the health of a user improves
they join progressively more healthy communities of users
with more challenging wellbeing feedback. We describe this
new scalable mechanism as community adaptive wellbeing
feedback.

Wellbeing adaptive energy allocation We design an energy
allocation scheme that prioritizes resources so those dimen-
sions of behavior that the individual is currently strug-
gling with (e.g., physical activity) are: (1) more accurately
assessed and (2) provided with immediate feedback, helping
to create awareness and promote change in individuals. User
behaviors that consistently trend close to healthy norms
are monitored less closely, with feedback provided on a
slower time-scale – therefore, less system resources (e.g.,
energy) are required in this case. Using this approach, the
more problematic user wellbeing behaviors still receive
the attention they demand, while key elements of smart-
phone usability (e.g., stand-by time) also can remain within
ranges acceptable to users. We describe this new scalable
mechanism as wellbeing adaptive energy allocation.

Both of these techniques are implemented as part of
the BeWell+ app deployment described in this article. We
present results from the first user study of any BeWell app
in the wild, which includes 27 people using BeWell+ over
a 19 day field trial. Findings from our study show that
(1) BeWell+ can coarsely assess wellbeing automatically,
which we validate using established medical self-report
surveys of physical and mental wellbeing; (2) community-
adaptive wellbeing feedback can promote realistic person-
alized health goals for each user; (3) despite the complexity
of multi-dimensional wellbeing feedback, users understand
BeWell+ feedback and are able to identify appropriate
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corrective actions to take; (4) significant increases in energy
efficiency result from wellbeing adaptive energy allocation;
and, (5) users react positively to their overall experience and
even show improvements in their ability to link everyday
actions to wellbeing outcomes.

This article is an extended version of a paper [41] pre-
sented at Wireless Health 2012. We provide an overview of
the BeWell+ app in Section 2. Section 3 details the design of
community adaptive wellbeing feedback. We describe well-
being adaptive energy allocation in Section 4. We present
the evaluation of the system and results from a user study in
Section 5. Finally, we discuss related work (Section 6) and
then make some concluding remarks in Section 7.

2 BeWell+ overview

In this section, we describe the BeWell+ app and architec-
ture. The BeWell+ app was developed for current smart-
phones as a proof-of-concept system for monitoring and
promoting holistic wellbeing. In our prior work [34] we
evaluated an earlier implementation of BeWell+, testing the
accuracy of the human activity inferences that it builds upon
and its ability to meet a series of system requirements (e.g.,
battery, computation). But we did not deploy the app or eval-
uate the system’s ability to monitor and provide feedback
along different health dimensions.

Overview As shown in Fig. 1, BeWell+ consists of two soft-
ware components: (1) BeWell+ phone app and (2) Cloud
infrastructure. The BeWell+ phone app automatically mon-
itors user’s everyday activities using the accelerometer and
microphone sensors on phone. Inference results from the
classifiers on the phone are then transmitted to the BeWell+
Cloud infrastructure. The Cloud infrastructure stores all the
data and computes wellbeing scores. Wellbeing scores sum-
marize the impact on overall health based of the inferred
behavioral patterns. BeWell+ computes wellbeing scores
for each health dimension it tracks. In the current proto-
type these are: physical activity, sleep patterns and social

interaction. The BeWell+ phone app presents these scores
back to users on the phone, using an ambient display
rendered on the wallpaper of the device (see Fig. 2).

2.1 Monitoring behavior

To track physical activity and social interaction BeWell+
relies on already developed activity recognition techniques
(e.g., [14, 37, 42, 43]). The physical activities of users are
classified into one of the following classes: {stationary,
running, walking} using an accelerometer. Similarly, the
microphone is used to classify ambient audio as either:
{non − voicing, voicing}. Our implementation adopts the
set of audio and accelerometer features detailed in [43],
which includes a range of time and frequency domain fea-
tures. Classification is done using a boosted ensemble of
naive Bayes classifiers [15]. Temporal smoothing is applied
to classifier results using a simple Markov model.

Monitoring sleep behavior requires a completely dif-
ferent approach. We developed in [34] a simple logistic
model that estimates the amount of hours slept based on
a collection of phone usage pattern. Our sleep model uses
statistics (e.g., duration, frequency) of everyday events
correlated with the amount of sleep the user receives.
The model uses occurrences of mobile phone recharging
along with other events detected by our activity inference
model, namely, periods of near silence or the phone being
stationary.

2.2 Wellbeing scores

Wellbeing scores range between 0 and 100 and are calcu-
lated for each of the three dimensions (viz. physical activity,
social interaction and sleep patterns). A score of 100 indi-
cates the person is matching or exceeding recommended
guidelines (e.g., averaging 8 hours sleep per day is repre-
sented by a score of 100). Our wellbeing scoring functions
are a result of a careful design process which leveraged:
the existing literature, guidelines from institutions (e.g.,
CDC), collaboration with medical researchers and short

Fig. 1 BeWell+ app
implementation, including
smartphone components
supported by a scalable cloud
system
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Fig. 2 Multiple wellbeing dimensions are displayed on the smart-
phone wallpaper. An animated aquatic ecosystem is shown with two
different type of fish whose behavior are affected by changes in well-
being (i.e., activity and social interaction); in addition, the ocean
ambient lighting conditions reflect the users sleep duration (shown on
Nexus S)

field experiments. For a comprehensive description of these
functions consult [34]; in what follows we provide a brief
summary:

Sleep Research exploring sleep health effects focus both
on the quantity and quality of sleep [39]. Although both
of these facets are important we focus solely on monitor-
ing sleep duration. Studies show oversleeping (“long sleep”)
carries similar negative health consequences to insufficient
sleep [11], thus, we penalize both behaviors. BeWell+ com-
putes a wellbeing score for sleep behavior within a single
day using a gaussian function,

sleepday(HRact ) = Ae
− (HRact−HRideal )2

2(HRhi−HRlo )2 (1)

in which HRact is the total quantity of sleep over a 24 hour
period, HRideal is the ideal hours asleep with HRhi and HRlo
being the upper and lower limits of acceptable sleep dura-
tion. Our sleep function is parameterized using a HRideal of
7 hours with a HRhi of 9 hours and HRlo of 5 hours, these
values are consistent with existing sleep studies [11].

Physical activity Our assessment of physical activity is
based on the duration the user is recognized as perform-
ing common physical activities (viz. walking, stationary,
and running). These inferences are used to estimate a daily
Metabolic Equivalent of Task (MET) value [12]. Being
definitive as to the ideal MET levels for an individual is
difficult as mental and physical health benefits occur at

different levels of activity. These MET levels are also sensi-
tive to user characteristics, such as, existing physical fitness
or particular genetic determinants. Initially, we currently
rely on generic guidelines established by the Centers for
Disease Control and Prevention [1] (CDC). Our daily scores
of physical activity are simply a linear regression,

physicalday(METact ) = (METhi − METlo)METact + METlo

(2)

where METact is the actual MET value for a user during
that day, with METhi and METlo being calibrated by the
high-end and minimum guidelines for adult aerobic activ-
ity set by the CDC. These values range between 300 and
150 minutes of moderate-intensity per week. Such aerobic
activity should be accompanied by muscle-strengthening
programs, ideal behavioral patterns for these programs are
also available from the CDC and are included within the
existing physical activity guidelines. However, we neglect
this aspect of physical activity due to the inaccuracy in mon-
itoring muscle-strengthening programs without on-body
sensors.

Social interaction Medical studies use a variety of mea-
sures to capture the social environment of a person. The
development of these measures are still an active area of
research. BeWell+ focuses on one of these metrics, social
isolation, as it is more easily captured with sensors available
in smartphones today. Studies of particular high-risk com-
munities show social isolation is correlated with basic forms
of human contact. For example, health deterioration exhib-
ited in the elderly is linked with, amongst others, a decline
in the frequency of human interaction (e.g., phone calls and
visits with friends and relatives) [29]. In the general popu-
lation, those with profound acquired hearing loss have been
seen to suffer a deterioration of psychological wellbeing
due to the associated communication difficulties [28]. We
measure social isolation based on the total duration of ambi-
ent conversations, which are detected by inferences made
using the mobile phone microphone. Insufficient medical
evidence exists to parameterize this relationship. At this
time we again use a wellbeing score for social interaction
with a linear regression,

socialday(DURact ) = (DURhi −DURlo)DURact +DURlo (3)

where DURact is the duration of conversation detected rel-
ative to the total time the microphone is active during a
single day. We determine empirically a value for DURhi ,
0.35, using the mean conversation ratio of a small 10 person
experiment; we also utilize this group to train our classifiers
(see Section 5). As we lack a population in which poor well-
being has caused atypical conversation patterns our DURlo
ratio is simply set to zero.
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2.3 Ambient display

The ambient display is an animation that is rendered on the
phone’s lock-screen and wallpaper, making it visible to the
user whenever the user glances or interacts with their smart-
phone. The display provides passive feedback to the user of
their current wellbeing scores. Prior examples of success-
ful persuasive systems [16] have found that wallpaper can
effectively promote changes in user activity. These studies
show phone wallpaper, when used as a glanceable display,
can keep user goals “persistently activated” [32] in the mind
of the user.

BeWell+ displays multiple wellbeing dimensions as an
aquatic ecosystem, as illustrated in Fig. 2. The animated
activities of a clown fish (which mirrors the user’s activ-
ity), the ocean ambient lighting conditions (which mirrors
the user’s sleep duration) and a school of small fish (which
mirror the user’s level of social interaction) provide a quick
summary of the current wellbeing to the user. The relation-
ship between the ambient display and the wellbeing scores
is described below:

Clown fish The clown fish represents the physical activ-
ity of the user. The score modifies the speed at which the
clown fish swims. At low levels of physical activity the fish
moves slowly from left to right lethargically. As the user’s
physical activity increases, the fish swims more vigorously,
even performing summersaults and backflips at high levels
of activity.

School of blue fish A school of fish swims with the clown
fish and represents the users social activity. The closeness
of the school of fish to the clown fish and its size grows
proportionally to the amount of social interaction of the user.

Lighting of ocean Sleep patterns are captured by the light
of the ocean. The ocean gets darker when the user lacks
sleep and has a low sleep score. As the user sleep level
increases, the ocean gradually become brighter.

The aquatic ecosystem represents a single point in the
design space of the ambient display for BeWell+. Before
selecting this visualization we performed small scale infor-
mal surveys of people from the target population. We found
strong preference from people for the aquatic ecosystem,
which is in agreement with examples from the literature
where animated animals are effective at motivating behavior
change (e.g., [40].)

3 Community adaptive wellbeing feedback

In this section, we describe BeWell+’s data-driven
community-adaptive approach to wellbeing feedback. The
behavior goals that underpin wellbeing feedback are based
on a combination of observations from the user population
and ideal “healthy” behavioral patterns. This allows feed-
back to automatically tune itself to the population in which
the system is deployed.

Implications of community diversity Wellbeing problems
and solutions can be highly personal. Each individual has
their own challenges to wellbeing shaped by factors includ-
ing, personal characteristics and behavioral tendencies. We
first observed this problem even in our initial deployments
of the original BeWell system, where we observe large
differences even within small groups.

To help quantify this problem further we turn to data from
our 27-person field trial (see Section 5.1 for further details).
To measure differences in wellbeing we use the three dimen-
sions of wellbeing scores previously defined in Section 2
(prior to any adaption). Figure 3 shows the distribution of
all wellbeing scores for each user, irrespective of the partic-
ular health dimension. Surprisingly, even within a relatively
small and homogenous group of people significant diversity
is present. From this figure we see that the value and the
variance of the wellbeing scores vary significantly across
users. Although not visible in the figure, we also find the
user behavior is also diverse within each separate dimen-
sion. For example, there are larges difference between the
upper and lower quartile wellbeing scores of subjects for
each dimension. Specifically, these differences are 61 % for
physical wellbeing, 83.1 % for social wellbeing and 75.5 %
for sleep dimension.

Fig. 3 A high diversity of wellbeing behavioral patterns exists among
our study population. A score of 100 refers to a “healthy” behavioral
pattern
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Feedback from wellbeing apps (along with most mobile
health systems) is typically goal based, implying an ideal
behavioral pattern to promote. However, high levels of com-
munity diversity prevent a single goal behavioral pattern
being applied to an entire user population. For example, it
is unrealistic to expect an elderly person to meet the same
goals for physical activity as a young adult. Similarly, doc-
tors or students often can not conform to a “normal” sleep
pattern – but would still benefit from appropriate feedback
indicating how their sleeping habits could be made more
healthy. Without adjusting the expectations that underpin
this feedback it will be ineffective to many users while also
damaging the confidence they have in the system. This is
the main goal of our new community feedback paradigm – it
presents a mechanism to potentially provide effective feed-
back for very large populations of diverse users in a scalable
manner.

Adaptive wellbeing feedback BeWell+ adapts generic well-
being score functions based on the overall behavior simi-
larity within the user population along with the similarity
of users to ideal wellbeing behaviors. This novel process
within BeWell+ allows feedback to adapt to the differences
between user communities. Without adaptation improve-
ments in behavioral patterns are not considered within the
correct context. Another example is as follows: a shift
worker who is able to increase her average quantity of sleep
from 4 to 5 hours, but this improvement may still score
poorly if compared to the general expectation applied to the
general public. However, if compared to other shift work-
ers this change could well place the individual in a high
performing percentile of that community or peer group.
Therefore, wellbeing feedback should recognize this as a
substantial positive change, even if the change required to
achieve “normal” sleep hygiene remains large.

Adaptation is a data-driven process which relies on
activity inferences, along with a trace of periodic GPS esti-
mates, being transferred to the cloud from the BeWell+ app.
Figure 4 illustrates each phase of the adaptation process,
all computational stages of adaptation are performed by
the cloud. Although only a single dimension is shown this
process is repeated for all three dimensions. The detailed
wellbeing score functions for these three dimensions can be
found in [34]. Each function takes a specific statistic related
to a user behavioral pattern. Adapted score functions main-
tain the same functional form, but with parameters being
revised to accommodate user diversity. At the conclusion of
this process a personalized set of wellbeing score functions
are generated for all BeWell+ users.

Guiding the adaptation process is a behavioral similar-
ity network, a weighted graph in which nodes correspond
to users and edge-weights quantify the level of similar-
ity. This network attempts to identify people with related
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Fig. 4 BeWell+ community adaptive wellbeing feedback

lifestyles and behavior constraints. BeWell+ computes sim-
ilarity by adopting the lifestyle similarity definition used in
[35, 36]. Specifically, we compute lifestyle similarity using
three types of information: mobility and diurnal patterns
in combination with the distribution of activities performed
by users. Mobility patterns are based on GPS location esti-
mates, which are tessellated into m distinct square tiles
of equal size. Diurnal patterns are captured as a series of
timestamps that are recorded whenever the user is inferred
to be non-stationary by the classification pipeline. These
timestamps are rounded, and are represented as the partic-
ular hour in the week in which they occur (e.g., they range
between hour 0 at the start of the week to hour 167 on the
final hour of the final day). The distribution of activities
is based on the duration users are inferred to be perform-
ing each activity classes (e.g, walking, socializing) detected
by the classification pipeline. We construct three histograms
for each of these types of lifestyle information for every
user, normalizing the frequencies across all histograms. For
each pair of users (i, j), we compute the lifestyle based
similarity by the following equation:

sim(i, j)lif e =
∑

f∈F
Tf (i)

�Tf (j) (4)
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where Tf (i) is a histogram vector for user i of type f and
F contains each type of lifestyle histogram. Lifestyle simi-
larity between two users is the sum of the inner product of
the histograms for each type of lifestyle information used
by BeWell+. Our use of a similarity network allows us to
avoid making a hard assignment of users to specific commu-
nities. Hard assignment may degenerate wellbeing scoring
functions if the community assignment is incorrect.

It is critical to keep our personalized wellbeing score
functions grounded with respect to “healthy” behavioral
norms. Consequently, we use an unadapted wellbeing score
function to balance the need to identify similar people with
the need to recognize which of these people are either pos-
itive or negative wellbeing role-models. We begin by using
the unadapted wellbeing score function once to score all
previously collected user behavior. For every observation of
user behavior (e.g., physical activity across a day) a data
tuple is formed containing, (1) the wellbeing score, and
(2) the relevant statistic concerning the wellbeing behav-
ior (e.g., a daily MET value). Each tuple is weighted based
on two factors: first, the similarity network edge-weight;
and second, how “healthy” users are compared to an ideal
behavioral pattern – determined by their average wellbeing
score (using an unadapted scoring function). Tuple weight
is a linear combination of these values with a parameter,
sim strength that determines how much influence user
similarity has over the final weight used.

Finally, the adapted scoring function is generated by
applying a weighted smoothing over the collection of tuples
and fitting the wellbeing functions to the smoothed tuples.
Adapted scoring functions set the underlying goals asso-
ciated with high scores as realistic near-term objectives,
rewarding improvement relative to people within their own
community or peer group. Of course over the longer term,
the ultimate goal of reaching a more ideal pattern remains
important. Our adaptive scoring strategy incorporates this
requirement by the process repeating as new data accu-
mulates. Each time the adaptation process repeats it incre-
mentally selects higher performing people as a frame of
reference for the user while still emphasizing the need for
these people to be relatively similar to the target user, with
sim strength controlling this trade-off.

4 Wellbeing adaptive resource allocation

In this section, we discuss the design of our wellbeing
adaptive resource allocation strategy. The novelty of this
approach is to prioritize the resource allocation based on
how well the user is coping with each individual health
dimension. BeWell+ dynamically shifts resources between
wellbeing dimensions (viz. physical activity, social interac-
tion and sleep patterns) as the behavior of the user changes

– dimensions with low wellbeing scores receiving more
resources than those with high scores. As a result, the accu-
racy and responsiveness of the BeWell+ app are optimized
within resource constraints and with an awareness of the
user’s wellbeing needs.

Insufficient energy resources Monitoring wellbeing
requires multiple aspects of daily life to be constantly mon-
itored. This puts undue load on the battery of smartphones
as this requires sensing and inference to be performed
continuously across a range of sensor modalities. Figure 5
shows the battery life of five subjects using the original
BeWell system, as reported in [34]. Even though each
Android smartphone is equipped with a large-capacity
battery (3200 mAh) battery life varies between 12 and 21
hours. If we assume the use of a factory standard battery
(1400 mAh) then these lifetimes will be reduced to between
7 and 10 hours. At this level users will have to recharge
their phone multiple times per day, otherwise BeWell will
only be able to monitor them for the fraction of the day
when the phone is active. This problem is more broadly
applicable to the growing number of mobile health apps
that consider multiple dimensions of behavior; and even
further, is known to impact a variety of mobile sensing
apps [47] and smartphone platforms [44].

Adaptive energy allocation BeWell+ conserves smartphone
energy usage by dynamically tuning the duty cycle of core
system components based on the wellbeing score of the
user. Figure 6 illustrates the control-loop used by BeWell+
to intelligently allocate the energy consumption, and high-
lights which component duty cycle parameters are tuned.
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Specifically, these parameters are: the rate at which sam-
pling, feature extraction and activity inference routines are
performed; along with how often BeWell+ interacts with
the cloud to either upload user-specific statistics or collect
revised wellbeing scores – both of which require community
interaction and so necessitate the cloud to be involved.

Our energy management strategy is based on a simple yet
effective optimization, which we will now describe:

Let dutyi denote the ith duty cycle parameter in
duty.all, the set of all duty cycle parameters in the
BeWell+ app. Let function accj(duty.all) estimate the
increase in error for specific dimensions of wellbeing scores
(indicated by j) due to increasing levels of duty cycling.
Further, let bat(duty.all) estimate the per day smart-
phone energy consumption due to BeWell+ operation, rel-
ative to potential dutyi values. The functions of bat and
accj use a polynomial regression fitted with data by profil-
ing the BeWell+ app running with different dutyi values,
in addition to data from user experiments, which enables
accuracy to be assessed. The values for each dutyi param-
eter is found by optimizing the following objective function:

arg min
duty.all

bat (duty.all)+
∑

αj · accj (duty.all)
(5)

where, αj is a weighting term allowing the accuracy of cer-
tain dimensions of wellbeing scores to be emphasized over
others. Specifically, αj is simply:

1

z
· (scoremax − scoreactual)/scoremax (6)

where scoremax is the maximum wellbeing score,
scoreactual is the present value for the jth dimension
of wellbeing and z is the term used to normalize weights
across all wellbeing dimensions.

The adaptive energy allocation component, shown in
Fig. 6, performs this optimization each time there is a
change in the wellbeing scores. As the wellbeing of the user
shifts (e.g., an unhealthy behavior improves significantly),
BeWell+ can automatically re-allocate energy to provide

more accurate monitoring and more responsive feedback for
the new wellbeing dimension of highest concern.

5 Evaluation

In this section, we study the performance of BeWell+ with
a 27 person field trial conducted over 19 days. We find that:
(1) BeWell+ can accurately track wellbeing across multiple
behavioral dimensions; (2) our community adaptive wellbe-
ing feedback mechanism can reconcile health norms with
the practical restrictions that limit near-term user lifestyle
changes; (3) users can digest multi-dimensional BeWell+
feedback and are seen to make positive changes in their
behavior; (4) wellbeing adaptive energy allocation is able to
intelligently allocate resources to underperforming aspects
of user wellbeing, while also adjusting to lifestyle changes;
and, (5) users report an overall positive experience from the
BeWell+ field trial.

5.1 Study methodology

Our study population contains 16 men and 11 women aged
between 21 and 37. Of these subjects, 9 % are faculty or
graduate students in a computer science department, 34 %
are doctors or medical researchers and the remaining 57 %
are students in the arts and life sciences graduate program.
Each volunteer agrees to carry a phone with the BeWell+
app installed. The subjects either move their mobile phone
SIM card into the Nexus One or use call forwarding so they
can use the study phone as their primary phone. We provide
each user with a holster to clip the phone on to their belt
or clothing. Users agree to keep the phone with them at all
times.

To verify the effectiveness of presenting multi-
dimensional feedback using the ambient display, the
participants are randomly and uniformly split into two
groups: multi-dimensional group and baseline group. All
subjects have the core BeWell+ software installed that
tracks sleep, physical activity and social interaction. How-
ever, the baseline group did not have the ambient display
and could only view the collected information via a web
portal that summarizes the time spent in each activity as a
fraction of the day. The multi-dimensional group has the
ambient display.

5.2 Multi-dimensional wellbeing monitoring

Our first series of experiments show that BeWell+ is able to
automatically monitor three dimensions of wellbeing (viz.
physical activity, social interaction and sleep patterns). We
find that (1) our automated wellbeing assessments compare
well with commonly used paper-based medical wellbeing
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Fig. 7 Subjects are ranked using the BeWell+ physical activity score
and the YPAS self-report survey. Both set of ranks agree fairly well
and have a levenshtein similarity of 81.3 %

surveys and (2) sensor-based estimates of sleep duration
closely follow reported ground-truth provided by study
participants.

Comparison to standard medical instruments The Yale
Physical Activity Survey (YPAS) [19] and SF-36 [6] are
standard ways of measuring physical and mental wellbe-
ing. To measure the agreement between these surveys with
the wellbeing scores produced by BeWell+ we rank all
participants within the experiment, first by their aggregate
wellbeing score and next by their survey results. Figure 7
visually shows the agreement between the two rankings for
each subject when using either physical activity wellbeing
scores or YPAS. The levenshtein similarity metric, shown in
Table 1 is 81.3 %, indicating these rankings correlate well.
We repeat this experiment for SF-36 and the social inter-
action wellbeing score, as shown in Fig. 8, and again find
agreement - although not as strong as the last experiment.
When comparing these two ranks the levenshtein similarity
metric falls to 56.3 %. This result is understandable given
mental health can have a greater variety of external factors
that influence the outcome, as opposed to case of physical
activity scores.

Sleep duration validation Finally, we perform an experi-
ment to assess the accuracy of sleep duration during the field
trial. Each subject self-reports the duration of their sleep

Table 1 Levenshtein similarity between user ranks based on medical
surveys and BeWell+ wellbeing scores

YPAS SF36

Physical activity score 81.3 % N/A

Social interaction score N/A 56.3 %
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Fig. 8 Subjects are ranked using the BeWell+ social interaction score
and the SF-36 self-report survey. The levenshtein similarity between
the two sets of subject rankings is 56.3 %

once a day via an online survey. As shown in Table 2 our
sleep model is able to estimate self-reported duration within
± 1.7 hours. This level of accuracy is inline with our find-
ing in [34] that considers only 5 people. We are unable to
examine the other inferences made by BeWell+ (viz. voic-
ing, walking, stationary, running) because the collection
of ground-truth necessary would have been too disruptive
to the user experience of our study subjects. [34] reports
the accuracy of these additional inferences which range
between 85 % and 98 % (but again only for 5 individuals).

5.3 Community adaptive wellbeing feedback

Our next experiments investigate two key aspects of well-
being feedback: (1) the effectiveness of adapting feedback
to keep implied healthy goals within realistic ranges for
all users; and, (2) the benefit of multi-dimensional feed-
back, as observed in the behavioral decisions of our study
population.

Adaptive wellbeing scoring in action To better understand
how our adaptive wellbeing feedback can compensate for
per user differences (e.g., lifestyles, occupation) we com-
pare the use of adaptive and non-adaptive feedback on
representative users from our study. Table 3 shows both
forms of wellbeing scoring compared to different behav-
ior changes which occur over the span of two days. In this
table we examine two groups selected from the top and

Table 2 Error of sleep duration estimation

RMSE MAE

Duration error 2.2 hrs 1.6 hrs
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Table 3 Under adaptive wellbeing feedback users continue to receive
feedback even if they are well above (or well below) the ideal
expectations of healthy behavior

High performance group (Sleep)

User A User B User C

Behavior change -4 % 5 % 10 %

Baseline score 88 90 100

Adaptive score 36 67 100

Low performance group (Social)

Behavior change -2 % 5 % 10 %

Baseline score 10 55 58

Adaptive score 10 77 83

bottom 20 % of study subjects in sleep and social dimen-
sions respectively. We refer to users in the top 20 % as high
performance group, and those in the bottom 20 % as low
performance group. In Table 3 user A from high perfor-
mance group in the sleep dimension declines in performance
by 4 % (≈ 0.3 hours). However, when using an unadap-
tive wellbeing scoring scheme her score remains high as she
continues to far outperform the expectation of this unadap-
tive scheme. User B has increased performance by 5 %
(≈ 0.4 hours), so she gets a high score under the baseline
scoring. But within high performance group, her perfor-
mance is in the middle, higher than user A but lower than
user C - this fact is only reflected in the adaptive version of
the wellbeing feedback. These users only receive personal-
ized feedback when using an adaptive scoring system that
understands their performance relative to their peers. Low
performance group illustrates an identical scenario. These
users from the bottom 20 % generally have low scores as
they are far behind the performance of the overall user pop-
ulation. But if only compared with their low performance
group counterparts, they will have significant changes in the
scores, depending on their relative performance inside this
group. Finally, Fig. 9 presents a time-series view of wellbe-
ing scores (12 days) for three different users from our field
trial. For each user we show their performance within a sin-
gle wellbeing dimension. From this figure one can see that
these users hardly receive informative feedback (e.g., their
scores remain at 100) without adaptive wellbeing scoring.
This is again caused by their behavior exceeding (nega-
tively or positively) the expected norms of the unadaptive
wellbeing score system. In Fig. 9, we also plot the rela-
tive percentile ranking of these users within their own group
(the green curve). Clearly, the adaptive scores correspond
much more closely to the users’ actual peer performance
compared to unadaptive scoring.

Multi-dimensional wellbeing feedback We measure the
quantitative benefit of providing feedback along multiple
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Fig. 9 By adapting wellbeing score functions users receive feed-
back that considers their relative position with peers who have similar
lifestyles

dimensions by comparing the changes in wellbeing scores
between our two study populations (viz. multi-dimensional
group and baseline group). To compensate for individual
variation that could bias results (i.e., participants that have
abnormally high or low wellbeing scores) we compare any
changes during the study relative to a baseline average score
for each person along each dimension. The baseline score is
calculated from data collected during the calibration phase
just before the start of the study – none of the subjects had
feedback or ambient display during the calibration phase.
Figure 10 shows the average difference in the daily score
for each person during the study period, relative to their
personal baseline. This figure shows a significantly greater
increase in score for multi-dimensional group compared to
baseline group. Specifically, this outperformance is 105 %
for physical activity, 88 % for social interaction and 507 %
for sleep. Two-sample t-tests at the 95 % significance level
indicate that these differences between multi-dimensional
group and baseline group are all statistically significant
(p = 0.049, p < 0.01 and p = 0.04 for the physical, social
and sleep dimensions respectively).
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Fig. 10 Increases in user wellbeing are largest for those subjects who
receive multi-dimensional wellbeing feedback

5.4 Wellbeing adaptive resource allocation

In the following set of experiments, we investigate how
efficiently BeWell+ manages smartphone energy while still
closely monitoring user wellbeing.

Energy efficiency In this experiment we compare
BeWell+’s adaptive resource management to a baseline in
which BeWell+ performs no duty cycling. This baseline
represents the upper bound accuracy of wellbeing scores
with respect to errors that are caused by duty cycling. To
compare these two schemes within identical experiment
conditions we perform a trace based experiment. We begin
by profiling the energy consumption of key energy consum-
ing stages of our BeWell+ prototype when using both the
adaptive and baseline approaches. We replay all 19 days of
raw data sensor data for each participant, which we collect
during our field trial. For each day of each participant we
estimate the energy consumed, in addition to computing
wellbeing scores.

Figure 11 shows a CDF of the average energy consump-
tion for each day in this experiment. This figure shows our
adaptive scheme is able to reduce average energy consump-
tion by more than 50 % for 80 % of the days, which is
approximately a 3-hour increase in battery life. Reductions
in energy consumption should be considered in comparison
to Fig. 12 which shows the impact to wellbeing score accu-
racy. For example, lowering energy consumption by 50 %
results in approximately 18 points of error in the wellbeing
score across all three dimensions. We consider this score
difference, which corresponds to 5 % error in voice fraction
measurement or a 1.4 hour error in sleep duration, tolerable
given the large increases in energy efficiency that result.
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Fig. 11 CDF of per user daily energy consumption under wellbeing
adaptive energy allocation compared to a hand-tuned baseline

Adaption to user wellbeing profile Figure 13 provides some
further insight into the findings of the prior experiment.
This figure illustrates the energy consumed for four rep-
resentative subjects, and the relative allocation of energy
to each sensor (and associated computation). For example,
user B consumes the most energy as this subject has uni-
formly poor wellbeing scores across all dimensions, making
it difficult to conserve energy from any one dimension.
As expected in this case the allocation of energy between
dimensions is evenly split. In contrast, user C uses signifi-
cantly less energy as she has comparatively high wellbeing
scores, allowing the adaptive scheme to lower energy used
for these dimensions. The reason why the accelerometer is
allocated a larger proportion of the energy budget for user
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Fig. 12 CDF of per wellbeing dimension score error (i.e., score
difference) under wellbeing adaptive energy allocation
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Fig. 13 Breakdown of daily energy consumption (by sensor) for four
different BeWell+ users

C is that it is still the weakest dimension (in comparison to
other dimensions).

5.5 Exit interview

In the remainder of this section we explore user reactions to:
(1) the multi-dimensional ambient display; and, (2) subject
attitudes and preferences to general usage of the BeWell+
app.

Reactions to ambient display Table 4 summarizes exit inter-
view questions related to the ambient display. Participant
responses indicate they have a positive reaction to the phone
wallpaper as a means to visualize multi-dimensional well-
being scores. A natural concern is that the use of multiple
dimensions will overwhelm the user and they will not be
able to easily digest the information. However, for example,
question 2 in Table 4 shows that people overall had little
difficulty in interpreting the ambient display.

Table 4 Ambient display results from exit interview

Survey questions Answers

1. User would prefer different wallpaper -1.00

2. Multi-dimensional Display easy to interpret 1.50

3. Multi-dimensional Scores helped keep balance 1.56

[-2: Strongly disagree, -1: Disagree, 0: Neutral, 1: Agree, 2: Strongly agree]

4. I showed others my wallpaper 83.5 %

5. Animation was annoying 0.00 %

[Percentage of person choose]

During exit interviews we discover friends and co-
workers often casually ask how is your fish today? Many of
the participants mention that they compare scores with other
participants; 83.5 % of multi-dimensional group report that
they show the display to their friends and colleagues. Exit
surveys highlight an unexpected amount of social activity
attributable to the ambient display in only a few weeks. Still,
this enthusiasm may be due to a potentially short-lived nov-
elty effect among subjects, this observation requires further
testing as part of a long-term followup study.

From Table 4 we find very few subjects prefer an alter-
native wallpaper – we believe this number may rise when
deployed in a broader population. During discussion we find
that participants commonly turn off the phone screen when
in more formal settings (e.g., meetings or while giving pre-
sentations) because of concerns it may be mistaken for a
game or lead to them not being taken seriously by their
peers. The ability to temporarily hide the display seems to
be a necessary feature. Still, none of the subjects describe
the visualization or the frequent animation as annoying (see
question 4 in Table 4).

BeWell+ app experience We find 70 % of subjects believe
that BeWell+ is a helpful and enjoyable app. A common
theme with subjects is that they are surprised by what they
learn from the study about their lifestyles. They report they
find themselves motivated to actively change their daily
behavior.

Encouraged by some early interview responses we decide
to investigate some of the reasons for improved behav-
ioral patterns during the study. We are curious if such
increases are partially due to an improved ability within
multi-dimensional group to connect everyday actions to
wellbeing outcomes. To test this we perform a simple recall
test. We show a timeline of participant wellbeing scores
along different dimensions (viz. sleep, activity, social) and
ask the participant to annotate and explain the variations
seen in the timeline. Our findings show that the subjects that
have access to multi-dimensional feedback on the phone are
better able to connect life events to fluctuations in well-
being. On average multi-dimensional group recalls 4.28
events per week compared to just 1.8 events for baseline
group. Similarly, multi-dimensional group is able to recall a
larger number of unique events as well. Common annotated
events included: friends visiting for the weekend, change of
(hospital) rotation, or pressure from work.

6 Related work

Recently, encouraging progress has been made towards
mobile systems that can monitor and improve specific
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health goals – such as, the development of an open soft-
ware architecture for mHealth [52]. Furthermore, various
research prototypes have been demonstrated to reliably
track a wide variety of key heath factors (e.g., sleep [7],
stress [20], diet [46], smoking [10], mood [38]). Similarly,
a number of persuasive systems [21] have been designed
to assist people in making desired behavior changes and
to motivate them to become, for example, more physically
active [16]. Commercial activity is also increasing, with
products such as, Nike+ [4] and DirectLife [5] becoming
more prevalent as mobile health gains mainstream consumer
acceptance.

However, a person’s wellbeing is shaped by a diverse
combination of health and lifestyle factors. Effective per-
sonal management of wellbeing requires apps that address
a large variety of daily behaviors which have broad health
related consequences. As a result, there is a growing interest
in building mobile systems that take a broader health per-
spective. Some approaches rely on developing a software
suite of separate mobile apps that manage multiple aspects
of wellbeing (e.g., [8, 9]). In contrast, [33] and [46] take a
more integrated approach to wellbeing management but rely
on manual data entry in the form of a diary to collect infor-
mation. AndWellness [30] utilizes a mixture of sensor-based
activity inferences and manual data entry to provide a gen-
eral monitoring platform for a range of wellbeing concerns.
However, AndWellness is designed to monitor the user
rather than promote behavior change. BALANCE [18] also
combines user and sensor input to closely monitor multiple
wellbeing factors (diet and physical activity), but it neglects
other important wellbeing dimensions including emotional
and social wellbeing. Finally, purpose-built sensor systems
(e.g., Fitbit [2]) can automatically monitor multiple wellbe-
ing relevant behaviors, such as sleep and physical activity
while also providing user feedback; but – unlike BeWell+ –
these solutions require the user to carry an additional sensor
at all times.

Wellbeing feedback Prior research has also investigated
how ambient displays, different types of goal settings, clas-
sifier accuracy, and user interaction affect mobile system’s
ability to encourage positive behavior changes (e.g., [16, 24,
40]). Ubifit Garden [16], one of the first mobile persuasion
system for improving physical wellbeing uses the wallpaper
of mobile phones to dynamically provide feedback about the
different types of physical exercise performed by the user.
The system presented in [40] links a player’s daily foot step
count to the growth and activity of a fish in a fish tank.
Although researchers have recognized certain groups within
a user population will benefit from personalized persua-
sive feedback (e.g., [17, 23]), existing persuasive systems
still typically provide the same type of feedback across all

users. Under BeWell+, each user receives wellbeing feed-
back automatically tuned to match their particular lifestyle
patterns.

Energy allocation One of the most significant practical
challenges to the everyday usage of mobile health systems
is the resource limitations of smartphones (e.g., battery life-
time). Continuously sensing wellbeing states and providing
real-time feedback will consume a significant fraction of
mobile device energy. Many proposed solutions consider
the general form of this problem and apply resource opti-
mization and/or adaptation techniques (e.g., [13]) to address
smartphone energy constraints while executing resource-
expensive tasks. Recent research (e.g. [47, 50, 51]) has
focused on minimizing the energy cost directly related
to mobile sensing apps. For example, [50] tunes sensing
pipelines in real-time both on mobile devices and in the
cloud based context, available resources and the require-
ments of the app (i.e., social science experiment). However,
unlike BeWell+, none of these systems are specifically
designed to take the user’s wellbeing into account while
attempting to optimize resource usage on the phone.

7 Conclusion

In this article, we presented the next generation of the
BeWell app – BeWell+, a smartphone app for monitoring
and providing feedback across multiple dimensions of well-
being. The primary goal of our field trial was to deploy
BeWell+ to mainstream users in a real-world setting. Our
deployment allowed us to both investigate fundamental
issues that may influence the design of future generations
of wellbeing apps and validate some of the assumptions that
underpin BeWell+. Due to the relative short duration of this
study it is not possible to make any claims of long-term
behavioral change. The behavioral changes we do observe
we believe are positive indications of the ability of BeWell+
to convey information and increase awareness. A longer-
term field study and a more diverse population of users are
both desired to further study BeWell+ and in particular the
novel wellbeing mechanisms it introduces, namely, com-
munity adaptive feedback and wellbeing adaptive energy
allocation.
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