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Abstract. An upright drawing of a planar graph G on k layers is a
planar straight-line drawing of G, where each vertex of G is placed on a
set of k horizontal lines, called layers and no two adjacent vertices are
placed on the same layer. In this paper, we give a linear-time algorithm to
check whether or not a given planar graph G admits an upright drawing
on three layers and if so, to obtain such a drawing of G. To the best of
our knowledge, this is the first algorithm for upright drawings of planar
graphs on k layers for k > 2.

1 Introduction

An upright drawing of a graph G is a planar straight-line drawing of G where
the vertices of G are placed on a set of horizontal lines, called layers such that
no two adjacent vertices are placed on the same layer. For example, Fig 1(b)
and (c) illustrates two planar straight-line drawings Γ1 and Γ2 of the graph G
in Fig 1(a). Among these two drawings, Γ1 is not an upright drawing of G since
the two adjacent vertices a and b are placed on the same layer in Γ1. However,
Γ2 is an upright drawing of G that occupies three layers. On the other hand,
the graph H of Fig. 1(d) does not admit any upright drawing on three layers
although it admits an upright drawing ΓH on four layers. One can infer from
this simple example that the problem of determining whether a given graph
admits an upright drawing on k layers for a given value of k is quite challenging.
However, the problem is quite trivial for where the number of layers is less than
three. In this paper, we give an algorithm to determine whether a graph G admits
an upright drawing on three layers.

An upright drawing of a planar graph is a variant of the well studied graph
drawing convention, named “layered drawings” [War77,Sud05]. A layered draw-
ing of a planar graph G is a planar straight-line drawing of G such that the
vertices are drawn on a set of layers. Thus an upright drawing of G is a lay-
ered drawing of G with the additional constraint that no two adjacent vertices
of G are placed on the same layer. Layered drawings have important applica-
tions in VLSI layouts [Len90], DNA-mapping [WG86], information visualization
[BETT99,KW01] etc. In some application areas, it is often desirable to obtain
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Fig. 1. (a) The graph G, (b) a drawing Γ of G on two layers.

upright drawings of a planar graphs on a desired number of layers. For exam-
ple in the “standard cell” technology employed during the VLSI layout design
process, the VLSI modules are placed on some constant number of previously
fixed rows so that they can be lined up in rows on the integrated circuit. The
placement of these modules thus gives a layered drawing of the graph obtained
from the VLSI circuit where each vertex represents a module in the circuit and
each edge represents an interconnection between two modules. Since the modules
in a standard cell are designed so that the input and output lines are emitted
from the top and the bottom of each module, this drawing is upright. Therefore
a VLSI circuit can be placed on a VLSI chip with k rows using the standard cell
technology if and only if the corresponding graph admits an upright drawing on
k layers.

There has not been much work on upright drawings of planar graphs. Sud-
erman gave a linear-time algorithm to obtain an upright drawing of a tree with
pathwidth h on ⌈3h/2⌉ layers [Sud04] but for upright drawings of a planar graph
there is no such previous algorithm. Nevertheless, there is some significant re-
sults on algorithms to check whether a planar graph admits a layered drawing
on two and three layers [Bie98,FLW03,CSW04] etc. There is also a previously
known algorithm to check whether a planar graph admits an upright drawing
on three layers with the additional constraint that adjacent vertices are placed
only on adjacent layers in the drawing [Sud05]. However, for a general case of
upright drawings of planar graphs, there is no necessary and sufficient condition
for a graph to admit an upright drawing on three layers or on any fixed num-
ber of layers greater than two. In this paper, we give a linear-time algorithm
that checks whether a given planar graph G admits an upright drawing on three
layers and obtains an upright drawing of G on three layers if it admits one.

The rest of this section is organized as follows. In Section 2, we give some
preliminary definitions that has been used throughout the paper. In Section 3,
we present our algorithm to detect whether a tree T admits an upright drawing
on three layers and to obtain an upright drawing of T on three layers if one
exists. Finally, Section 6 is a conclusion.

2 Preliminaries

In this section, we give some definitions and present an outline of our algorithm.



Let G = (V, E) be a simple graph with vertex set V and edge set E. We also
denote the set of vertices of G by V (G) and the set of edges of G by E(G). Let
(u, v) denote an edge of G joining two vertices u and v of G. Two vertices u and
v of G are neighbors of each other if G has an edge (u, v). The edge (u, v) is said
to be incident to the vertices u and v and the vertices u and v are said to be
adjacent to each other. The degree of a vertex v in G is the number of incident
edges of v in G. A graph G is a subgraph of another graph H if V (G) ⊆ V (H)
and E(G) ⊆ E(H). Let G be a subgraph of another graph H . Then H − G
denote the subgraph of H obtained from H by deleting all the vertices in G and
the edges incident to these vertices.

A path P in a graph G is a sequence of vertices v0, v1, . . . , vn such that G
contains an edge ei = (vi−1, vi) for each i, (1 ≤ i ≤ n) and all the vertices vi,
(0 ≤ i ≤ n) are distinct. Such a path P is also called a v0, vn-path of G. The
vertices v0 and vn of the path P are called the end-vertices of P . A graph G
is connected if there exists a u, v-path in G for every pair of vertices u, v ∈ V .
Otherwise, the graph G is disconnected. A component of a graph G is a connected
subgraph of G which is not a subgraph of any other connected subgraph of G.
A cycle in a graph G is a path in G whose end-vertices are the same. A tree is a
connected graph which does not contain any cycle. A vertex u of a tree T having
degree one in T is called a leaf of T . A vertex u of T having degree greater than
one in T is called an internal vertex of T .

A k-th caterpillar is defined as follows.

(i) For k = 1, a k-th caterpillar is a single vertex tree.
(ii) For k > 1, a k-th caterpillar is a tree that contains a path S, called the

spine, such that each component of T − S is a (k − 1)-th caterpillar.

The caterpillarity of a tree is k if it is a k-th caterpillar but not a k + 1-th
caterpillar.

A k-layer drawing of a tree T is a drawing of T where each vertex of T is
placed on one of k horizontal lines called layers and each edge of T is drawn as
a straight-line segment without any edge crossings. An upright drawing of T on
k layers is a k-layer drawing Γ of T such that no two adjacent vertices in T are
placed on the same layer in Γ . A proper drawing of T on k layers is a k-layer
drawing Γ of T such that all the adjacent vertices in T are placed on consecutive
layers in Γ . Note that a proper drawing of a tree T is also an upright drawing
of T but the reverse is not true.

3 Upright Drawings of Trees

In this section, we give a necessary and sufficient condition for a tree to admit
an upright drawing on three layers. Based on this characterization, we also give
a linear time algorithm to check whether a given tree admits an upright drawing
on three layers and to obtain such a drawing if it does.

It is well known that a tree T admits an upright drawing on two layers if and
only if T is a caterpillar [omK97]. The following lemma extends this result for
upright drawing on three layers.



Lemma 1. A tree T admits an upright drawing on three layers if and only if T
is an extended caterpillar.

Proof. We first assume that T has an upright drawing Γ on three layers. Let u
and v be the leftmost and the rightmost vertices of T in Γ . Let S denote the
unique path between u and v in T . This path divides the entire area of Γ into
two regions, both of which have the maximum height at most two. Hence each
component of T − S admits an upright drawing on two layers and hence it is a
caterpillar [omK97]. Therefore by definition, T is an extended caterpillar and S
is the corresponding spine.

(a) (b)

Fig. 2. (a) The spine of a tree that admits an upright drawing on three layers, (b) An
upright drawing of an extended caterpillar on three layers.

We now assume that T is an extended caterpillar and we give an algorithm
to obtain an upright drawing of T on three layers. Let us denote these three
layers as l1, l2 and l3 from top to bottom. Let S = v0, v1, . . ., vf be the spine of
T . We place the vertices of S on l1 and l3 layers such that consecutive vertices
on S are placed on different layers and the x-coordinate of vi is greater than
the x-coordinate of vi−1 for 1 ≤ i ≤ f . (See Fig. 2(b).) Since each component
C of T − S is a caterpillar, C admits an upright drawing ΓC on two layers due
to [omK97]. Let vS be the vertex of S that is adjacent to some vertex vC of
C in T . Then we can place the drawing ΓC of C (possibly after mirroring) on
the two layers other than the layer on which vS is placed and add the edge
(vS , vC) using straight-line segment without any edge crossings. We thus obtain
an upright drawing of T on three layers as illustrated in Fig. 2(b). Q.E .D.

The proof of the sufficiency of the above lemma gives a linear-time algorithm
to obtain an upright drawing of an extended caterpillar on three layers if the
spine (or at least two end vertices of the spine) is given. If the spine is not
specified, one can detect whether a given tree T is an extended caterpillar using
this algorithm by considering each pair of leaves of T the end-vertices of an
spine. However, this näıve approach takes O(n2) time. In the rest of this section,
we give an outline of an algorithm that detects whether a given tree T is an
extended caterpillar and in the positive case, find the spine of T in O(n) time.
Before presenting that, we need to define the notion of “compressing a vertex in
a graph”.

A vertex v of degree two in a graph G is said to be compressable if both of
its neighbors have degree greater than two. Let v be a compressable vertex in a
graph G and let vl and vr be the two neighbors of v in G. Then to compress the



vertex v in G is the operation of deleting the vertex v (and its incident edges)
from G and adding the edge (vl, vr) to G.

We now have the following lemma.

Lemma 2. Let T be a tree and let Tc be the tree obtained compressing all the
compressable vertex of the tree T . Let T ∗ be the tree obtained from Tc by deleting
all the leaves of Tc. Then T is an extended caterpillar if and only if there is a
path S∗ in T ∗ such that each component of T ∗ − S∗ is a path.

Proof. We first assume that T is an extended caterpillar and S is a spine of T as
illustrated in Fig. 3(a) where the bold edges represents the spine. Let S∗ be the
subgraph of T ∗ obtained by compressing all the compressable vertices of S in T
as illustrated in Fig. 3(c) by bold edges. We now show that for each component

T
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T3

Tc T
∗

(a) (b) (c)

Fig. 3. (a) An extended caterpillar T , (b) The tree Tc obtained by compressing T , (c)
The tree T

∗ obtained from Tc by deleting all the leaves of Tc.

C of T − S, the component in T ∗ − S∗ obtained from C is a path. since C is a
caterpillar, deleting all the leaves of C yields a path P [Wes05]. Again, all the
leaves of C are also leaves of T and Tc except possibly one leaf vC of C, which is
adjacent to a vertex vS of S in T . For example, all the leaves of the component
T1 of T − S in Fig. 3(a) are also leaves of T but for each of the components T2

and T3 of T − S, the black-colored leaf is not a leaf of T . We may assume that
the degree of vS is at least three, since otherwise vS is and end-vertex of S and
we can extend the spine S of T upto vC . Let v′C be the neighbor of vC on C. If
the degree of v′C is also greater than two in C as for the component T2 of T − S
in Fig. 3(a), then vC is compressable in T and deleted in Tc. Hence the subgraph
of T ∗ corresponding to C is the path P . On the other hand, if the degree of v′C
is two as for the component T3 of T − S in Fig. 3(a), then vC is not deleted in
T ∗ but the component of T ∗ − S∗ corresponding C is still a path with only the
vertex vC added to P . Thus each component of T ∗ − S∗ is a path as illustrated
in Fig. 3(c).

We now assume that there is a path S∗ in T ∗ such that each component of
T ∗ − S∗ is a path and prove that T is an extended caterpillar. Let u and v be
the two end-vertices of S∗. Let S be the unique path in T between u and v. Note
that S∗ and S contains the same set of vertices in the same order except possibly



some vertices of S are compressed or deleted in T ∗. If each component of T − S
is a caterpillar, then T is an extended caterpillar where S is the spine. We thus
assume that there is a component C in T − S, which is not a caterpillar. Then
C has the “Y-graph” as illustrated in Fig. 4(a) as its subgraph [Wes05]. Then,
without loss of generality, we assume that this Y-graph is connected to S in any
of the three different ways as illustrated in Fig. 4(b)–(d). One can easily see that

(a) (b) (c) (d)

Fig. 4. (a) A Y-graph, (b)–(c) three ways of connection between a Y-graph and S.

in each of these cases, the component of T ∗−S∗ correspoding to C is not a path,
which is a contradiction. Therefore each component of T −S is a caterpillar and
hence T is an extended caterpillar, where S is the spine of T . Q.E .D.

One can check in linear time whether a tree T has a path S such that each
component of T − S is a path by the algorithm presented in [ASRR08]. In the
positive case, these algorithms also find such a path S for the given tree T
that satisfies the above condition. The algorithms presented in Lemmas 1 and
3 then obtain an upright drawing of a given tree T on three layers if one exists.
Therefore summarizing all the lemmas in this section, we obtain the following
theorem.

Theorem 1. One can determine in linear time whether a given tree T admits
an upright drawing on three layers and obtain such a drawing of T if one exists.

4 Upright Drawings of Biconnected Graphs

In this section, we first give a necessary and sufficient condition for a biconnected
plane graph to admit an upright drawing on three layers. We also give a linear-
time algorithm to obtain an upright drawing of a biconnected plane graph on
three layers if it admits one. Finally, we show that if a biconnected planar graph
G admits an upright drawing on three layers, then one can find in linear time
an embedding Γ of G that admits an upright drawing on three layers.

We first have the following lemma that establishes a necessary condition for
a biconnected plane graph to admit an upright drawing on three layers.

Lemma 3. Let a biconnected plane graph G admit an upright drawing Γ on
three layers. Then the simple weak dual graph G∗ of G is a path.



Proof. We first prove that G∗ does not contain any cycle. Assume for a contra-
diction that G∗ contains a cycle C. Then the faces of G corresponding to those
vertices of G∗, that belong to the cycle C, induces at least one internal vertex of
G with degree three or more as illustrated in Fig. 5(a). Therefore, to prove that
G∗ contains no cycle, it is sufficient to prove that G does not have any internal
vertex with degree three or more.

Since the vertices of G that are on the top and bottom layers in Γ are on
the outer face of G, all the internal vertices of G are on the middle layer. Let us
assume that there is an internal vertex v of G with degree three or more. Then
v is placed on the middle layer in Γ . Since Γ is an upright drawing, none of the
neighbors of v in G are placed on the middle layer in Γ . Hence, either the top
or the bottom layer contains at least two neighbors of v in G. Without loss of
generality, let us assume that v has two neighbors u and w on the top layer in
Γ . Since v is an internal vertex, there must be a path between u and w along
the top layer as illustrated in Fig. 5(b). However, this is not possible since no
two adjacent vertices are placed on the same layer in Γ .

(a) (b)

Fig. 5. (a) A cycle in G
∗ induces an internal vertex with degree three or more in G,

(b) G does not contain an internal vertex of degree three or more.

We thus assume that there is no cycle in G∗. Since Any cycle requires at least
three layers for any upright drawing, every face of G occupies all three layers in
Γ . Therefore each face shares edges with at most two other faces of G, one to
its left and one to its right in Γ . Hence, every vertex of G∗ has degree at most
two and G∗ is a path. Q.E .D.

We call a biconnected plane graph a dual-path biconnected graph if its simple
weak dual graph is a path. The above lemma implies that if a biconnected
plane graph G admits an upright drawing on three layers, then G is a dual-path
biconnected graph. However, this condition is not sufficient. Before we give a
necessary and sufficient condition for a biconnected plane graph to admit an
upright drawing on three layers, we need some definitions. Let G be a dual-
path biconnected plane graph with at least two faces and let G∗ be its simple
weak dual path. Let Fl and Fr be the faces corresponding to the leftmost and
the rightmost vertices of G∗ respectively. Let F ′

l and F ′

r be the faces of G,
immediately right to the face Fl and immediately left to the face Fr respectively.



If we delete those vertices of Fl that are not on the face F ′

l and those vertices
of Fr that are not on the face F ′

r, then the outer cycle of G is divided into two
paths. Let us denote these two paths by Pt and Pb and call them top path and
bottom path respectively. Let the two end vertices of Pt be u and u′ and the two
end vertices of Pb be v and v′ where u and v are on the face Fl and u′ and v′

are on the face Fr in G. We call u the left-top, v the left-bottom, u′ the right-top
and v′ the right bottom vertex of G. We denote by odd(u) (even(u)) the set of
vertices that are at odd (even) distance from u along Pt. We also denote by
odd(v) (even(v)) the set of vertices that are at odd (even) distance from v along
Pb. Similarly we define the notations odd(u′), even(u′), odd(v′) and even(v′). We
now have the following theorem that gives a necessary and sufficient condition
for a biconnected plane graph to admit an upright drawing on three layers.

Theorem 2. Let G be a dual path biconnected graph with at least two faces. and
let u and v be the left-top and left-bottom vertices of G. Let us define three sets
of vertices; Stb = odd(u) ∪ odd(v) ∪ Vin, Stm = odd(u) ∪ even(v) ∪ Vin and
Smb = even(u) ∪ odd(v) ∪ Vin, where Vin is the set of internal vertices of G.
Then G admits an upright drawing on three layers if and only if at least one of
the three sets of vertices Stb, Stm and Smb is independent in G and contains no
vertices of degree greater than three in G.

Proof. Let Fl and Fr be the faces corresponding to the leftmost and the right-
most faces of G respectively and let Pt and Pb be the top path and bottom path
of G respectively. Let us also assume that u′ and v′ are respectively the right-top
and the right-bottom vertices of G. Then u and u′ are the two end vertices of
Pt and v and v′ are the two end vertices of Pb, where u and v are on the face Fl

and u′ and v′ are on the face Fr.

We first assume that G admits an upright drawing Γ on three layers. Since
the drawing of each face requires all three layers of Γ , the faces of G are placed
in the order of the corresponding vertices along the simple weak dual graph of
G and the two faces Fl and Fr are drawn at the leftmost and rightmost position
in Γ . Then the two paths Pt and Pb must be drawn between the drawings of
Fl and Fr as illustrated in Fig. 6(a). One of these two paths (say Pt) must be
drawn using the top and the middle layers only and the other (say Pb) using
the middle and the bottom layers only since otherwise, there will be some edge
crossings. However, since u and v are on the common boundary of Fl and the
face immediately to the right of Fl, either u and v are adjacent to each other or
both of them are adjacent to some internal vertex. In both the cases, both u and
v are not placed on the middle layer since no two adjacent vertices are placed
on the same layer in Γ . Therefore, there are three possible cases regarding the
placement of the two vertices u and v on these three layers;

(i) u on the top layer and v on the bottom layer

(ii) u on the top layer and v on the middle layer

(iii) u on the middle layer and v on the bottom layer



(a) (b)

Fig. 6. (a) (Pt) and Pb are drawn bertween the drawing of Fl and Fr, (b) no vertex
placed on the middle layer have degree greater than three.

Let us first assume that u and v are placed on the top and bottom layers
respectively in Γ . Then all the vertices of the set Stb = odd(u) ∪ odd(v) ∪ Vin

must be placed on the middle layers in Γ . By a similar reasoning, it can be
showed that the set of vertices Stm (Smb) are placed on the middle layer in Γ if
u is placed on the top (middle) layer and v is placed on the middle (bottom) layer
in Γ . Again the vertices of G placed on the same layer of an upright drawing
gives an independent set in G. Furthermore Since G is biconnected, no vertex
w of G with degree greater than three is placed on the middle layer in Γ since
otherwise, w would be a cut vertex in G as illustrated in Fig. 6(b). Therefore,
at least one of the three sets Stb, Stm and Smb is independent in G and contains
no vertices with degree greater than three in G.

We now assume that at least one of the three sets (say Stb) is independent
in G and contains no vertices of degree greater than three in G as illustrated in
Fig.7(a). Under this assumption we will constructively obtain an upright drawing

(a) (b) (c)

Fig. 7. (a) A dual-path biconnected graph G where Stb is independent and have no
vertices with degree greater than three, (b) drawing of Pt and Pb, (c) drawing of G.

of G on three layers. We place the vertices of Pt on the top and middle layer in
the increasing order of x-coordinate such that all the vertices of the set even(u)
are placed on the top layer and all the vertices of the set odd(u) are placed
on the middle layer. Similarly, we place the vertices of Pb on the bottom and
middle layer in the increasing order of x-coordinate such that all the vertices of
the set even(u) are placed on the bottom layer and all the vertices of the set
odd(u) are placed on the middle layer. While placing the vertices of the Pb path
on the bottom and middle layer, we take special care so that if a vertex vt of
Pt and a vertex vb of Pb are adjacent to each other or have an internal vertex



as their common neighbor, then these two vertices are placed in such positions
that we can add an edge between them without creating any edge crossings. (See
Fig. 7(b).) This is always possible because no vertices of odd(u) and odd(v) have
degree greater than three. We note that all the internal vertices of G have degree
two in G and have exactly one neighbor from Pt and exactly one neighbor from
Pb they all belong to the set Stb. We place all these internal vertex of G in such
a position on the middle layer that we can add an edge between these vertices
and their neighbors on the two paths Pt and Pb. We finally place the vertices of
the two faces Fl and Fr that have not been yet placed and add all the edges of
G to complete the drawing. (See Fig. 7(c).) Q.E .D.

The above lemma gives a necessary and sufficient condition for a biconnected
plane graph to admit an upright drawing on three layers. We now address the
problem for a biconnected planar graph. Let G be a biconnected planar graph
and we want to check whether G admit an upright drawings on three layers. Since
G may have an exponential number of embeddings, a naive approach of checking
all these embeddings for an existence of an upright drawing on three layers would
take an exponential amount of time. But the following lemma implies that we can
find a suitable embedding Γ in linear time so that only checking the embedding
Γ of G for an existence of an upright drawings on three layers would suffice for
the graph G itself.

Lemma 4. Let G be a biconnected planar graph that admits an upright drawing
on three layers. Then One can find in linear time an embedding Γ of G such that
the plane graph corresponding to Γ admits an upright drawings on three layers.

Proof. We first describe our algorithm to find a desired embedding Γ of G in
linear time. Then we will prove that the embedding Γ given by our algorithm
admits an upright drawing on three layers.

If a biconnected plane graph admits an upright drawing on three layers, then
all its internal vertices have degree at most two as pointed out in Lemma 4.
Therefore we first find an embedding Γ1 of G where all the internal vertices in
Γ1 have degree two in G. We obtain a graph G1 from G by adding a vertex w
and adding edges between w and all the vertices with degree greater than two
in G. Since the graph G admits an upright drawing, it has an embedding where
all the internal vertices have degree two, i.e. all the vertices of degree greater
than two are in the outer face. Therefore, the new graph G1 is planar. We now
find such an embedding Γ ′ of G1 that has the vertex w in the outer face. Then
deleting the vertex w (and all its incident edges) from Γ ′ yields an embedding
Γ1 of G such that all the internal vertices in Γ1 have degree two in G.

Q.E .D.

5 Upright Drawings of General Graphs

In this section we give a necessary and sufficient condition for a general planar
graph to admit an upright drawing on three layers. We assume that the graph



is connected since otherwise, the condition can be tested for each component
of the graph. Beofre presenting the necessary and sufficient condition, we need
some definitions.

Let G be a connected planar graph. A biconnected component of G is a
maximal biconnected subgraph of G. We also denote each component of the
graph obtained by deleting the vertices of all the biconnected components from
G by a tree part. A tree part T of G is said to be connected to a vertex u
of a biconnected component of G if a vertex v of T is adjacent to v. A tree
part T of G is trivial if T consists of a single vertex. We also call a tree part
a 2-layer tree component if it is not trivial and is a caterpillar. Again, we call
a tree part a 3-layer tree component if it is an extended caterpillar but is not
a caterpillar. A 2-layer or a 3-layer tree component T is said to be compatible
with a biconnected component B if an end-verex of a spine of T is adjacent to
a vertex of B; otherwise T is said to be non-compatible with B.

Let a biconnected component B of G admits an upright drawing Γ on three
layers. A vertex v of B is called a left (right) boundary vertex of Γ if there is
no vertex or edge to the left (right) of v in Γ . The left (right) boundary of Γ
consists of all the left (right) boundary vertices of Γ . A boundary vertex of Γ is
either a left or a right boundary vertex. A boundary vertex of Γ is called a top,
bottom or middle layer boundary vertex if it is on the top, bottom or middle layer
respectively. Two boundary vertices of Γ are said to share a common boundary
if both of them are either left boundary vertices or right boundary vertices. A
biconnected component B1 is said to be connected to a compatible biconnected
component B2 if B1 and B2 admits upright drawings ΓB1

and ΓB2
respectivle

on three layers such that one of the following conditions holds.

– ΓB1
and ΓB2

has a common middle layer boundary vertex v, and all the tree
parts connected to a boundary vertex on the same boundary as v in ΓB1

and
ΓB2

are trivial.
– ΓB1

and ΓB2
has a common boundary vertex v, and v is a middle layer

boundary vertex in neither ΓB1
nor ΓB2

.
– ΓB1

has a boundary vertex v1 adjacent to a boundary vertex v2 of ΓB2
,

and both v1 and v2 are not middle layer boundary vertices of ΓB1
and ΓB2

respectively
– There is a tree part T of G such that T is an extended caterpillar where the

end vertices of a spine of T are adjacent to a boundary vertex of ΓB1
and a

boundary vertex of ΓB2
respectively.

We now have the following theorem that gives a necessary and sufficient
condition for a connected graph to admit an upright drawing on three layers.

Theorem 3. Let G be a connected planar graph. G admits an upright drawing
on three layers if and only if each of its biconnected components B admits an
upright drawing ΓB on three layers such that for each biconnected component B,
no tree part is connected to an internal vertex of B, all the tree parts connected
to a vertex of B other than the boundary vertices are trivial and for each of the
left and right boundaries of ΓB, one of the following conditions (1)–(4) holds.



(1) There is no middle layer boundary vertex that is connected to a tree part;
one of the top and bottom layer boundary vertex is connected to at most one
compatible 3-layer tree component or one compatible biconnected component
and zero or more caterpillars and the other boundary vertex is connected to
at most one compatible 2-layer tree component and zero or more trivial tree
parts.

(2) There is a middle layer boundary vertex which is connected to exactly one
compatible 3-layer tree component or exactly one non-compatible 2-layer tree
component or exactly one compatible biconnected component and at most
one compatible 2-layer tree component and zero or more trivial tree parts
are connected to the vertices on the same boundary of ΓB .

(3) There is a middle layer boundary vertex which is connected to at most one
compatible 2-layer tree component and zero or more trivial tree parts and at
most one of the top and bottom boundary vertex is connected to at most one
compatible 3-layer tree component or one compatible biconnected component
and zero or more caterpillars and all the tree parts connected to the other
boundary vertex are trivial.

(4) There is a middle layer boundary vertex which is connected to exactly two
compatible caterpillar and the other tree parts connected to the the vertices
on the same boundary are trivial.

6 Conclusion

In this paper, we have given a necessary and sufficient condition to check whether
a given tree T admits an upright drawing on three layers. Based on this charac-
terization, we have also given a recognition and drawing algorithm for upright
drawings of trees on three layers. We have also given a necessary condition for
a tree to admit an upright drawing on k layers for a given value of k > 3. It
remains as our future work to obtain a necessary and sufficient condition for a
tree to obtain an upright drawing on k layers for any given value of k.
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